
IEEE CICC 2024

Scalable and Interpretable Brain-Inspired Hyper-
dimensional Computing Intelligence with Hardware-
software Co-design
Hanning Chen, Yang Ni, Wenjun Huang, and Mohsen Imani
Department of Computer Science, University of California, Irvine
{hanningc, yni3, wenjunh3, m.imani}@uci.edu

 Abstract—During the advancement of modern deep learning
algorithms, models become increasingly demanding in
computing resources and power-hungry, such that they are
considered less hardware-friendly for many real-world
deployments. The motivation behind brain-inspired computing,
or neuromorphic computing, is that the human brain remains
the most sophisticated yet efficient learning module ever. We
focus on HyperDimensional Computing (HDC), which aims to
realize efficient learning via brain-like high-dimensional vector
operations. Prior research works have shown that HDC is a
lightweight alternative to deep learning in various applications,
such as classification and reinforcement learning. HDC can also
serve as a reasoning machine on graph datasets and an
efficient information retrieval method for genomic sequencing.
In this paper, we revisit hardware-software codesigns of HDC,
covering the latest developments in both HDC algorithms and
accelerator designs. We also carried out extensive
comparisons between HDC works and the state-of-the-art.

1. INTRODUCTIONS
The Machine Learning (ML) algorithm has become a powerful tool
for computers to perform cognitive tasks, as it has shown super-
human accuracy in areas such as image classification, speech
recognition, and robotic control. However, many existing ML
algorithms, especially those based on the Deep Neural Network
(DNN), are computationally intensive, have limited flexibility in
parallelization, and require high-precision arithmetic operations. In
the era of the Internet of Things (IoT), these limitations pose
significant challenges for implementing ML on resource-constrained
devices, including embedded systems and edge devices. Therefore,
we have seen an increasing amount of research in the emerging field
known as neuromorphic computing, focusing on more efficient ML
approaches that are inspired by brain structure and functionalities.

As one of the brain-inspired methods, HyperDimensional
Computing (HDC) seeks to overcome these challenges by mimicking
the high-dimensional nature of data processing in the brain [2], [33].
The development of the HDC paradigm is based on interdisciplinary
research at the intersection of theoretical neuroscience and
computer science. For example, human short-term memory carried
out in the hippocampus region can be modeled as an auto-
associative memory based on orthogonal representations, which
motivates the high-dimensional representation and light-weight
memorization in HDC. More specifically, an HDC encoder maps
original inputs to a high-dimensional space (also known as the
hyperspace) by representing them as long binary (or real-valued)
vectors of several thousand dimensions, i.e., hypervectors. Then, to
realize memorization as well as other brain-like functionalities, HDC
uses simple element-wise operations to perform symbolic
manipulations on these hypervectors, such as bundling (More details
in Section 2).

HDC owns several unique properties that have been crucial for
ML applications with stringent efficiency requirements [1], [8]. For
example, the hypervector representation is holographic, meaning
that information is distributed evenly across vector components.
Holographicness plays a key role in encoding distinct concepts with
random and near-orthogonal representations, allowing HDC to
represent and manipulate atomic symbols in an intuitive way.
Another property is that HDC supports concise and efficient learning
and reasoning, thanks to both the operation-wise simplicity and the
richness of the hypervector representation. These characteristics
lead to several advantages of HDC over conventional ML methods,
such as lower power/energy consumption, faster learning ability, and
better model interpretability [10], [12], [16], [22].

 HDC-based algorithms have been applied to various domains of
applications as a more efficient alternative to existing solutions. For
classification tasks, prior HDC works have proposed solutions to the
recognition of text, speech, and image, reaching significantly faster
training and inference with comparable learning quality to methods
like DNN and SVM. Besides those common data modalities, HDC
has also been leveraged for processing multi-sensory readings and
bio-signals like Electroencephalography (EEG) and Electro-
myography (EMG) [15],[19]. More importantly, HDC enables single-
pass classifier training with satisfying quality, which means that it can
learn from data in one pass without the need for multiple iterations.
Recent works also propose HDC-based algorithms for regression
and Reinforcement Learning (RL), where hypervectors are used to
learn function representations with fewer samples and iterations [14],
[18], [24], [25]. Compared to DNN-based algorithms, they bring
notably faster convergence, resulting in a more efficient RL agent for
robotic control and resource management. Apart from learning tasks,
HDC has also shown its strength in reasoning tasks such as graph
reconstruction, node classification, and graph matching, where the
hypervector representation powers a transparent, interpretable, and
lightweight reasoning process [4], [29]. Finally, HDC is bestowed with
brain-like efficiency in pattern-oriented computations, making it a
great fit for information retrieval in tasks like genome sequencing [5],
[9], [26]. In HDC-based sequencing methods, a single hypervector
can effectively combine multiple patterns, thereby giving much
higher efficiency in similarity computation and matching.
 Adding onto the efficiency advantage shown at the algorithm
level, HDC is especially more hardware-friendly during deployments,
compared to the DNNs with deep layers and backprop-based
training. HDC can be implemented in a resource-effective manner
since the hypervectors are often represented with low-precision
components, e.g., binaries, and highly parallelizable as most
operations in the hyperspace are dimension-independent. These
nice properties allow HDC to further enhance its performance by
exploiting the characteristics of different hardware platforms,
enabling HDC-based algorithms to run on low-power and resource-
limited devices that are suitable for real-time and online applications
[20], [21].
 For example, HDC can greatly benefit from the high parallelism
offered by Processing-in-Memory (PIM) architectures [27], [31], [32],
where it tackles the von Neumann bottleneck on both the hardware
and algorithm levels. Although PIM platforms have tight budgets for
the maximum supported model precision, we can leverage the
robustness of HDC-based algorithms on low-precision models even
after aggressive quantization. On the other hand, the reconfigurable
computing logic in FPGA enables the specific data path design
targeting HDC models. As shown in previous works [?], HDC is also
intrinsically suitable for acceleration on FPGAs because of its natural
algorithm-level parallelism and loose requirement for high-quality yet
power-hungry computing logic (e.g., digital signal processing (DSP)
unit).
 In this paper, we summarize prior hardware-algorithm codesigns
of HDC accelerator targeting different machine leaning applications.
These applications cover a wide range, including classification,
regression, reinforcement learning, graph reasoning, and genomic
sequence matching. For each application, we introduce both HDC
model design and accelerator design. We also provide hardware
performance results which include resource utilization and
comparison with state-of-the-art works.

2. HDC MOTIVATION AND BASICS
HDC draws inspiration from the insights gained from neuroscience,
specifically, the observation that the human brain consists of
approximately 100 billion neurons and an astonishing 1000 trillion
synapses. Consequently, it becomes plausible to represent all
possible states of a human brain through a high-dimensional vector.
To closely mimic the information representation and memorization
mechanisms observed in the human brain, HDC translates low-
dimensional inputs into a hyperspace. The hyperspace comprises
hypervectors, each possessing over a thousand independent and
identically distributed (i.i.d.) components, which can take the form of
binary, integer, real, or complex values [34]. In this section, we

979-8-3503-9406-1/24/$31.00 ©2024 IEEE

20-1
20

24
 IE

EE
 C

us
to

m
 In

te
gr

at
ed

 C
irc

ui
ts

 C
on

fe
re

nc
e

(C
IC

C)
 |

 9
79

-8
-3

50
3-

94
06

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CI

CC
60

95
9.

20
24

.1
05

29
04

9

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

provide the fundamental background for understanding HDC
systems.
 A general HDC system can roughly be divided into three stages.
The first stage in HDC is mainly concerned with the Encoding
process, which entails the mapping of data into a high-dimensional
space and the generation of atomic hypervectors. Subsequently,
HDC performs a series of Hypervector Operations on these
hypervectors, which are categorized into Binding (Multiplication),
Bundling (Accumulation), and Permutation (Shift-Rotate). For
instance, when training HDC class hypervectors, all related
hypervectors belonging to the same class are bundled together to
form a unique class hypervector, which serves as the prototype for
that data class. Finally, the third stage encompasses Similarity
Measurement, where the similarity between the testing query
hypervector and the class hypervectors is assessed. Depending on
the specific task at hand, a range of hyperspaces has been
proposed, spanning from binary to complex-valued hypervectors.
Here we take binary hypervector encoding as an example. More
variations are discussed in the subsequent sections. Binary or
Bipolar HDC encoding systems primarily rely on vectors with a length
of up to 10! bits, where these vectors comprise values of +1
(representing logic 1) and -1 (representing logic 0). Recent efforts
have been directed toward reducing the dimensionality of these
hypervectors to enhance application accuracy, recognizing that
longer hypervectors carry a more information-rich payload. In
addition to dimensionality, the type of encoding employed is another
crucial factor that directly affects accuracy.
A. Hypervector Encoding
1) Binary/Bipolar HDC Encoding
 In binary HDC, data is typically encoded into random
hypervectors, with an emphasis on ensuring orthogonality between
them. The concept of orthogonality plays a pivotal role in HDC, as it
allows for the effective representation of unique features or symbols.
For example, it enables the representation of letters in a text
processing system, pixel positions in an image in a cognitive task
[35], or time series in a voice recognition task [37]. Notably, randomly
generated vectors tend to exhibit a degree of near orthogonality to
each other [10]. Consequently, these randomly generated and pre-
allocated vectors effectively serve as atomic data primitives within
HDC systems, representing symbols. Various methods have been
employed in the literature to achieve near orthogonality among
hypervectors. One prominent technique involves initiating the
process with an initial seed vector and subsequently determining
additional vectors through random bit-flip operations [38].
 For example, this encoding is applied for data in the form of
feature vectors (address and value). For input data of 𝑑 dimensions,
the model generates an address codebook with one entry for each
dimension {𝐴", ⋯ , 𝐴#} . And a value codebook {𝐿", ⋯ , 𝐿$}
corresponding to the 𝑞 quantized levels of the continuous value (we
assume that the data is normalized for each dimension and thus
shares the same range). The encoder then performs a bundling of
the address-value pair association for a data point 𝒙 ∈ ℝ#:
 𝐻𝒙 = ∑ 𝐴&#

&'" ⊙𝑉& , 𝑉& ∈ {𝐿", ⋯ , 𝐿$} (1)
2) Kernel-based HDC Encoding
Prior works [28] also exploit an encoder method inspired by the
Radial Basis Function (RBF) kernel trick [42, 43], for mapping data
points into the hyperspace. This encoder considers the non-linear
relation between the features during the encoding. However, kernels
like RBF implicitly maps inputs to an infinite-dimensional space, and
the exact mapping is intractable. Prior work in [39] proposes that with
a large but finite dimensional mapping 𝑍, the shift-invariant kernel 𝐾
can be approximated using inner-products:
 𝐾(𝑥(− 𝑥)) ≈ 𝑍*(𝑥()+𝑍*(𝑥)) (2)
where 𝐷 is the dimensionality of the mapping. To approximate the
RBF kernel, the mapping is defined as follows:

 𝑍*(𝑥) = ;,
*
𝑐𝑜𝑠?𝐻@@⃗ 𝑥 + 𝐵@⃗ D (3)

𝐻@@⃗ is a vector of dimension 𝐷 with its elements randomly sampled
from standard Gaussian distribution 𝒩(0,1) and 𝐵@⃗ functions as a

bias vector with elements sampled from uniform distribution 𝒰(0,2𝜋).
Once they are randomly generated, we keep them fixed during the
later learning and inference.
B. Hypervector Operations
Once information is represented within the hyperspace, composite
representations can be constructed through dimension-independent
operations. These operations include bundling, binding, and
permutation, and they maintain the dimensionality of the
hypervectors, resulting in a hypervector residing in the same
hyperspace as the original operands. Furthermore, these operations
can be combined, offering versatility in creating customized
encodings that cater to various applications, effectively capturing the
inherent compositionality found within the data.
1) Bundling
Bundling, also known as point-wise addition or accumulation,
calculates a hypervector 𝒵 = Σ-ℋ𝒾 from a set of input hypervectors
{ℋ",ℋ,, ⋯ ,ℋ𝒾}. In comparison to randomly generated hypervectors,
the resulting 𝒵 is maximally similar to the inputs {ℋ",ℋ,, ⋯ ,ℋ𝒾}. In
the realm of high-dimensional space, bundling functions as a
memory operation and offers a straightforward means to verify the
presence of a query hypervector within a bundled set.
2) Binding
Binding, also referred to point-wise multiplication, serves the purpose
of establishing connections between two related hypervectors.
Hypervectors ℋ" and ℋ, are bound together to form 𝒵 = ℋ" ∗ ℋ,
which is approximately orthogonal to both ℋ" and ℋ, . Due to
reversibility, in bipolar cases, 𝒵 ∗ℋ" = ℋ,, allowing for the retrieval
of information from both hypervectors through the bound
hypervector.
3) Permutation
The unary operation unique to HDC, known as Permutation (ρ-),
involves the rotational shifting of a hypervector, with 𝑖 indicating the
number of times the operation is applied. When applied to a
hypervector ℋ", this operation returns a dissimilar hypervector 𝒵 =
ρ(ℋ") to the input. It also allows for the assignment of specific orders
to hypervectors within the hyperspace. Notably, the inverse
operation ρ/&(ℋ) enables the exact retrieval of the original input
hypervector, ensuring reversibility in the permutation process, as
demonstrated in \cite{cohen2018bringing}. The permutation operator
in HDC provides a flexible means of manipulating and organizing
hypervectors, which proves highly beneficial in a variety of cognitive
computing tasks.
C. Similarity Measurement
In HDC, the assessment of similarity between hypervectors is a
pivotal measure, determined by the function δ(ℋ",ℋ,) → ℝ. This
similarity metric is instrumental in discerning the relationships
between hypervectors. It quantifies the angle between two
hypervectors and, depending on the type of data, various
implementations of this measure can be applied. For real or integer
data, cosine similarity is commonly used. Binary representations, on
the other hand, can efficiently utilize the Hamming distance for this
purpose.

In the case of non-binary hypervectors, cosine similarity, defined
by Eq. (1) is used to measure their similarity. This measure focuses
on the angle between the hypervectors and disregards the influence
of their magnitude, where |	⋅	| signifies the magnitude. Unlike the
inner product operation of two vectors, which affects both magnitude
and orientation, cosine similarity solely depends on the orientation.
In most high-dimensional algorithms featuring non-binary
hypervectors, cosine similarity is more commonly utilized than the
inner product. Moreover, when 𝑐𝑜𝑠(ℋ",ℋ,) approaches 1, it signifies
an exceedingly high level of similarity. For example, 𝑐𝑜𝑠(ℋ",ℋ,) = 1
indicates two hypervectors ℋ" and ℋ, are identical. Conversely,
when 𝑐𝑜𝑠(ℋ",ℋ,) = 0, the two vectors are considered dissimilar.

 𝑐𝑜𝑠(ℋ",ℋ,) =
ℋ!⋅ℋ"
|ℋ!||ℋ"|

 (4)

 In the case of binary hypervectors with a dimensionality of 𝐷,
where their components are either 0 or 1, the normalized Hamming
distance, as computed in Eq. (2) is used to measure their similarity.
When the Hamming distance between two hypervectors approaches

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

0, they are defined as similar. For example, 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) = 0
indicates every single bit at each position is the same, marking ℋ"
and ℋ, are identical. And when 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) = 1, it signifies
that ℋ" and ℋ, are diametrically opposed, indicating maximum
dissimilarity.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) =
"
*
Σ&*1ℋ!(&)5ℋ"(&) (5)

3. HDC-BASED CLASSIFICATION
A. Hyperdimensional classification algorithm
In a classification problem, HDC first uses an encoder to map all
training samples to the hyperspace in training, and similarly we
encode the test samples at the beginning of the inference process.
Then hypervectors associated with each class are bundled together
during the training process, thereby enabling single-pass training.
Compared with traditional DNN-based models, HDC models use
much less power and have lower latency. Since HDC efficiently
leverages hypervectors to compress and memorize the samples
seen to class hypervectors and then perform learning tasks, HDC
models are generally smaller than DNN model. In this section, we
will go through a series of procedures in HDC-based classification
algorithm. Fig. 1 (a) shows an overview of hyperdimensional
classification.
1) Adaptive Single-pass Training:
In HDC classification, the naive hypervector addition results in
saturation of class hypervectors by data points with the most
common patterns. Due to model saturation, data points with non-
common patterns are likely to miss-classified by the model.
 As shown in Fig. 1 (b), with an adaptive training framework in
OnlineHD [23], however, we can achieve efficient and accurate HDC
learning in one pass. Instead of naively combining all encoded data,
our approach adds each encoded data to class hypervectors
depending on how much new information the pattern adds to class
hypervectors. If a data point already exists in a class hypervector, we

will add no or a tiny portion of data to the model to eliminate
hypervector saturation. If the prediction matches the expected
output, no update will be made to avoid overfitting. Assume that δ is
the similarity between the encoded query hypervector and the
hypervector for class 𝐶. Instead of naively adding data point to the
model, we update the model based on the δ similarity. For instance,
if a training sample that belongs to class 2 is wrongly classified to
another class. Then, we will update the second class hypervector
using the query hypervector weighted by the similarity difference:
(1 − 𝛿,)𝐻@@⃗ .
2) Adaptive Hypervector Retraining:
Although single-pass training is suitable for fast and ultra-efficient
learning, embedded devices may have enough resources to perform
more accurate learning tasks. HDC classifier also supports retraining
to enhance the quality of the model. Instead of starting to retrain from
a naive initial model, the retraining starts from the initial adaptive
model. This enables HDC to retrain the model with a much lower
number of iterations, resulting in fast convergence. Fig. 1 (c) shows
the functionality during adaptive retraining.
 The adaptive retraining follows a similar learning procedure as
initial single-pass training. For each encoded training data point, say
𝐻@@⃗ , we check the similarity of data with all class hypervectors in the
model and updates the model for each miss-prediction. Retraining
examines if the model correctly returns the label 𝑙 for an encoded
query 𝐻@@⃗ . If the model mis-predicts it as label 𝑙′, the model updates as
the equation shown in the figure, where 𝛿6 = 𝛿?𝐻@@⃗ , 𝐶ℓ@@@⃗ D and 𝛿6# =
𝛿?𝐻@@⃗ , 𝐶ℓ#@@@@@⃗ D are the similarity of data with correct and miss-predicted
classes, respectively. This ensures that we update the model based
on how far a train data point is miss-classified with the current model.
In the event of a very far miss-prediction, the retraining makes a
major change in the mode. While in case of marginal miss-prediction,
the update makes smaller changes to the model.
B. Hardware and Software Co-Design
Fig. 2 presents the FPGA acceleration architecture of HDC classifier.
We first encode each data point by computing the inner product of a
feature vector with different weight vectors. Since the Gaussian
distribution creates many near-zero values, we can easily create
sparse random vectors to reduce the number of multiplications. The
weight vectors can be stored with a vector with (1 − 𝑠) ×
𝑛	consecutive non-zero values, and an index value that represents
the index of the first non-zero element where s is the sparsity factor
and n is the number of features. All weight vectors are stored in Block
RAM (BRAM), which is on-chip FPGA memory (Fig 2. (a)). During
the encoding, our approach prefetches the weight vectors from the
BRAM blocks and stores them in the locally distributed memory that
can be accessed faster than BRAM. During the encoding, FPGA
reads the first m features of original data points (m ≤ n). Next, it
accesses the weight vector and then multiplies (1 − 𝑠) × 𝑛
continuous dimensions of the feature vector with the corresponding
weight vector. These multiplications are processed using Digital
Signal Processor (DSP) blocks, and they are parallelized for different
weight vectors. The results of the inner products are accumulated
using a tree-based adder structure (Fig. 2. (b)). Finally, the cosine
function is calculated using the lookup table (LUT) logic. Finally, the
encoded hypervector can be binarized by considering the sign of the
encoded data as a binary output.
C. Results

Fig. 2. Hyperdimensional Classification on FPGA.

Fig. 1. Hyperdimensional classification algorithm with single-pass and iterative training.

hD h2 h1
Encoded Data

C1D C12
C2D C22

CkD Ck2

C11
C21

Ck1

δ1

δ2

δk

M
ax

Test
Data

Train
Data

Si
ng

le
-P

as
s

Tr
ai

ni
ng

En
co

di
ng

(a) High-level Overview for HDC Classification

Similarity

Trained Model

Retraining

(b) Adaptive Single-pass Training

C1D C12
C2D C22

CkD Ck2

C11
C21

Ck1

hD h2 h1
Encoded Data

C1
C2

Ck

H

δ1

δ2

δk

(c) Adaptive Iterative Retraining

hD h2 h1
Encoded Data

C1D C12
C2D C22

CkD Ck2

C11
C21

Ck1

δ2

Similarity

Se
le

ct
or

Label

(1
-δ

2)
×H

Model Update

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

We evaluate HDC classification accelerator on Xilinx KC705 FPGA.
Table I presents the FPGA resource utilization. Regarding the
acceleration efficiency, we compare the FPGA accelerator with
Raspberry Pi 3B+ using ARM CPU in Table II. Table II lists the
number of required OnlineHD dimensions in each bit precision that
results in maximum classification accuracy. Table II also reports the
average Energy-Delay Product (EDP) of FPGA and CPU running
OnlineHD using different hypervector precision. All results are
normalized to CPU EDP using hypervectors with 32-bit precision.
Our evaluation shows that the CPU provides the highest efficiency
using lower-dimensional vectors. This is because CPUs take the
same number of resources to perform 1-bit or 8-bit arithmetic
operations. This limits the amount of parallelism in the CPU. In
contrast, FPGAs are more efficient in processing high-dimensional
but low precision vectors. The lookup table and flip-flops resources
on FPGA can perform several parallel bitwise operations and enable
fast and efficient OnlineHD computation. Our goal is to maximum
FPGA throughput, where we can process the maximum number of
data points at a time. To eliminate off-chip memory to be a bottleneck
of computation, FPGA needs to perform maximum computation over
each read. We observe that FPGA provides minimum EDP using 2-
bit precision. In this precision, OnlineHD maximizes FPGA resources
while avoiding high precision arithmetic, as the complexity FPGA
arithmetic increases exponentially with the bit-width.

Table I. Hyperdimensional Classification Acceleration on
Xilinx KC705

 LUT FF BRAM DSP
Utilization 43.6% 12.3% 41.7% 43.9%

Table II. Impact Of Bit Precision On CPU & FPGA Efficiency

 32-bits 16bits 8-bits 4-bits 2-bits 1-bits
Dim (D) 1.2K 2.1K 3.6K 5.6K 7.5K 8.8K

EDP CPU 1x 1.11x 1.83x 2.24x 3.1x 4.02x
EDP FPGA 12.90x 11.39x 6.91x 5.64x 4.08x 4.19x

4. HDC-BASED REINFORCEMENT LEARNING
A. RL task definition
The primary goal of Reinforcement Learning (RL) is training an
agent's capabilities of maximizing rewards when interacting with its
environment [14, 16, 18]. Based on whether an agent uses a policy
to select its action for each time step 𝑡 , we can divide the RL
algorithm into policy-based RL, such as Proximal Policy Optimization
(PPO) [18], and off-policy RL, such as Deep Q-Learning Network
(DQN) [14]. Take DQN as an example, at each time step 𝑡, an agent
receives its state 𝑠8 from the environment and performs an action 𝑎8
to the environment. The agent maintains a Q function to select the
action based on its current state 𝑠8 . After conducting 𝑎8 to the
environment,
the agent will receive a reward 𝑟8 as feedback and transfer into a new
state 𝑠89" . The agent will repeat these interactions with the
environment and try to maximize the cumulative reward 𝑅8 =
∑ γ&/8+
&'8 ∗ 𝑟8, where 𝑇 is the episode's total time, or trajectory length,

and γ ∈ (0,1] is the time step discount factor.
B. Hyperdimensional regression algorithm
Regression is a kind of supervised learning that is used to predict
continuous function values given its independent variables. It has
been widely used in data analysis and is also an indispensable
component in RL algorithms. To find the causal dependencies
between the variables, regression techniques generally need to rely
on sophisticated and costly deep learning algorithms. However,
running these algorithms during training results in significant
computational power and storage, which is beyond the capability of
existing edge devices.
 On the other hand, HDC can serve as a lightweight regressor by
mapping the original function space to the hyperspace. In HDC-
based regression [25], by using the kernel-based encoder defined in,
we can construct a hyperdimensional representation of function,
similar to with the mapping 𝑍* : 𝑅@⃗ = ∑ α:𝑍*(𝑥:): . We refer to this

mapping 𝑍* as an HDC encoder that outputs encoded hypervectors
𝑍*(𝑥). The representation 𝑅@⃗ shows that we can approximate the
function through a weighted sum of encoded training samples, which
makes itself also a hypervector. In addition, we refer to 𝑅@⃗ as the
model hypervector, and the inference is simply the inner product
between the model and encoded hypervector: 𝑓(𝑥) = 𝑅+@@@@@⃗ 𝑍*(𝑥) .
Notice that the complex conjugate is omitted because 𝑍*(𝑥) has only
real components. To update the model hypervector 𝑅@⃗ , we feedback
the prediction error as the weight for the corresponding encoded
input. Assume a true value 𝑉8;<= and a predicted value 𝑉>;=# =
𝑅+@@@@@⃗ 𝑍*(𝑥:) , the update step for the model is: 𝑅@⃗ = 𝑅@⃗ + ?𝑉8;<= −
𝑉>;=#D𝑍*(𝑥:) . This update process is essentially tuning the
parameter α: for a particular training sample 𝑥: through the
hypervector elementwise add/subtract operation, which is highly
parallelizable and lightweight.
C. Efficient RL via HDC
Regression is heavily used in RL to evaluate a certain state, in terms
of how much total reward can be acquired in expectation if starting
from this state. To begin with, in the hyperdimensional Q-learning
algorithm [14], we combine a random exploration strategy with the
greedy policy, i.e., ϵ-decay policy. Assuming the action space 𝒜 and
time step 𝑡:

 𝐴8 = g
𝑟𝑎𝑛𝑑𝑜𝑚	𝑎𝑐𝑡𝑖𝑜𝑛	𝐴 ∈ 	𝒜,𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝜖
𝑎𝑟𝑔𝑚𝑎𝑥?∈	𝒜𝑄(𝑆8, 𝐴), 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝜖

 (6)

The probability of selecting random actions will gradually drop after
the agent explores and learns for several episodes. With a rate of
changing ϵ-decay less than 1; this ensures agents start to trust their
learned model gradually. 𝑄(𝑆8, 𝐴) is a hyperdimensional regression
model that returns approximated Q-values for input action-state
pairs. Once an action 𝐴8 is chosen, the agent interacts with the
environment. We then obtain the new state 𝑆89" for the agent and
the feedback reward 𝑅8 from the environment. At the next time step
𝑡 + 1 , we select another action 𝐴89" . This chain of actions and
feedback rewards form a trajectory or an episode until some
termination conditions are met. To train an RL algorithm, these
episodes or past experiences are usually saved to local memory as
training samples. More specifically, we save a tuple of four elements
for each step in the experience replay buffer: (𝑆8, 𝐴8, 𝑅8, 𝑆89").
 The model is trained at the end of each time step after saving
current information to the replay buffer. We then apply a strategy
called experience replay; we will sample a one-step experience tuple
from past trajectories in the replay buffer to train our HDC regression
model. To update the model, we first encode the input state 𝑆8 to the
hypervector 𝑆8@@@⃗ and the predicted value 𝑞8_>;=# is simply calculated
as the dot product. Since most RL tasks can be viewed as a Markov
Decision Process (MDP), the Bellman equation gives a recursive
expression for the Q-value at step 𝑡. To learn the HDC regression
model that represents the optimal Q-function, we use the Bellman
optimality equation as shown below:
 𝑞8_8;<= = 𝑅8 + γ𝑚𝑎𝑥?𝒬D(𝑆89", 𝐴) (7)
Here we use a delayed model 𝒬D that gets updated periodically using
parameters in 𝒬, known as the Double Q-Learning. We also include
a reward decay term γ that adjusts the effect of future rewards on the
current step Q-value. Finally, we update the model corresponding to
the action taken, using the error 𝑞8_8;<= − 𝑞8_>;=# and the encoded
state hypervector, with the learning rate β:

Fig. 3. Hyperdimensional Q-Learning overview on CPU-FPGA

Platform.

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

 𝑀?$%!@@@@@@@@@@⃗ = 𝑀?$@@@@@@@⃗ + β?𝑞8_8;<= − 𝑞8_>;=#D𝑆8@@@⃗ (8)
D. Hardware Acceleration Design
Fig. 3 presents the CPU-FPGA architecture of hyperdimensional
reinforcement learning acceleration framework [24]. The agent’s
interaction with the environment is run on a CPU, and a replay buffer
is maintained on the same host CPU. To accelerate high-
dimensional vectors (called hypervectors) operations during training
and inference, the host CPU will offload corresponding state, action,
and reward data to the FPGA kernel via PCIe communications as
shown in Fig. 3 (a). After finishing the hypervector computation, the
kernel FPGA will return to training or inferring results back to the host
CPU. The hypervector computation on the FPGA includes three
layers: the encoding layer (Encoding), the regression layer
(Regression), and the model updating layer (Updating). The FPGA
kernel reads the input data, such as the state, action mask, and
reward, via the AXI interface from DRAM or HBM. The quantization
precision that we chose here is a fixed point-32 bit. The original state
vector is encoded into a HDC vector inside the encoding layer. The
kernel function that we selected for this layer’s encoding is an
exponential function. The encoded HDC vectors will then be loaded
into the regression layer (Fig 3. (c)). The generated Q value will load
into the updating layer (Fig 3. (d)). Two operations occur inside this
layer. The first is the selection of the optimal action index and
relaying it back to the host CPU (Fig 3. (f)). The second is to generate
the model update value and store it in the on-chip cache (Fig 3. (e)).
 In Table III, we compare our acceleration of HDC-based RL
algorithm with previous RL acceleration works. We mainly focus on
the comparison of DSP utilization, model size, throughput, and
energy efficiency.

E. Results
We implemented hyperdimensional reinforcement learning (HDRL)
accelerator on Xilinx Alveo U280. The host CPU is Intel Xeon 6226.
The reinforcement leaning environment includes OpenAI Gym
CartPole and LunarLander. Table IV presents the resource
utilization. In Table IV, we compare our HDRL FPGA accelerator with
state-of-the-art deep reinforcement leaning FPGA accelerator on
both learning throughput and energy efficiency.
5. HDC GRAPH REASONING
A. Problem Definition

Memorization and reconstruction are essential functionalities that
enable machine learning algorithms to provide a high quality of
learning and reasoning for each prediction [4, 29, 36]. Fig. 4 shows
the general hyperdimensional graph reasoning (HGR) procedure.
HGR supports two high-level reasoning tasks: graph memorization
(memorization) and graph reconstruction (reconstruction). Graph
memorization is the process of compressing the information of a
graph into a single hypervector. Graph reconstruction aims to rebuild
the relations between entities based on the previously done
memorization.
B. HDC Model Design
The memorization process (Fig. 4 (a)) includes two steps: the node
memory hypervector generation, and node memory bundling. The
memory hypervector is generated by aggregating each node’s
neighbors’ feature hypervectors. Fig. 4 (b) provides an example of
node memory hypervectors generation based on the graph shown in
Fig. 4 (a). The memory bundling process consists of binding each
node’s hypervector with its memory hypervector and bundling the
results across all nodes (Fig. 4 (c)). Fig. 4 (d) gives an example of
graph node memory reconstruction. To determine each node’s
neighbor nodes, first we need to reconstruct each node memory
hypervector. The second is to remove the noise of the reconstructed
memory hypervector.
C. Hardware Acceleration Design

Table III. Comparison Table with previous RL Acceleration works

 ASPLOS’19[40] FCCM’20[41] ICCAD'20[42] IPDPSW'21[43] DAC'21[44] DARL1

Platform Xilinx VCU1525 Alveo U200 ASIC PYNQ-Z1 Alveo U50 Alveo U280

Clock 180MHz 285MHz 800MHz 100MHz 164MHz 171MHz

Algorithm A3C PPO A3C DQN DDPG HDQL
Task Env Discrete Continuous both Discrete Continuous Discrete

Precision Floating 32-bit
Floating 32-
bit - Fixed 32-bit Fixed 32, 16-bit Fixed 32-bit

DSP 2348 3744 - 4 2302 17

Model Size 2592.0 KB 229.6 KB - - 514.4 KB 64 KB

Throughput 12849.1 IPS 6823.2 IPS + + 38779.8 IPS 36597.1 IPS

Energy Efficiency 141.7 IPS/W - + + 2638.0 IPS/W 5256.3 IPS/W

Table IV. Resource Utilization and Performance on Alveo U280
 CartPole Lunar Lander

LUT 73.1K 117.4K
BRAM 276 546

UltraRAM 79 143
FF 38047 42508

DSP 17 17
f (MHz) 171 MHz 171 MHz
L (cycle) 417 624

Fig. 4. Hyperdimensional graph reasoning (HGR) example.

Fig. 5. Hyperdimensional Graph Reasoning Acceleration on CPU-

FPGA Computing Platform.

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

Figure 5 is an overview of the CPU-FPGA heterogeneous platform.
We first convert the graph representation from adjacency matrix
format into compressed sparse row (CSR) format. Although the CSR
format successfully diminishes the matrix’s sparsity, it also incurs the
computing workload imbalance problem as discussed by previous
works [20], [25]. To fix this issue, we design an out-of-order (OoO)
style, density-aware scheduler running on the CPU. The scheduler
will offload actual hyperdimensional computing (HDC) activities on
kernel FPGA. Here suppose the hypervector dimension is D. To
parallelize the matrix multiplication (MM), we split each graph node’s
hypervector into T chunks. Each chunk’s dimension 𝐷𝑐 =	*

+
. As

shown in Fig 5, those T vectors will be first loaded into T high
bandwidth memory (HBM)’s channels and then accessed by T
independent transaction IP (TXIP). Inside each TXIP, there is one
aggregator IP (aIP) and one decoder IP (dIP). The aggregator IP will
conduct memorization computing, and the decoder IP will conduct
reconstruction computing. After each TXIP finishes its computing
activities, we concatenate each channel’s chunk and generate the
result hypervector.

D. Results
We implemented HGR accelerator on Xilinx Alveo U50. Table V
presents resource utilization. Here we try to implement aggregator
IP and decoder IP on the same FPGA but the implementation of them
can be separated. In Fig. 6 We compare HDR FPGA accelerator with
multiple different hardware platforms including NVIDIA GTX 1080,
RTX 3090, Jetson Orin, and previous PIM accelerator.
6. HDC GENOMICS
A. Problem Definition
The inherent sequential processes of genome matching, which can
be computationally intensive and slow. The process of predicting the
possible DNA/RNA sequence that a specific protein has originated
from is called back-translation. Aligning the back-translated RNA
sequence against the database locates the most similar sequences
used to predict the functionality of the unknown protein sequence.
Proteins are made up of one or more chains of 20 common amino
acids. An unknown protein can be characterized when its sequence
shares significant similarity with a protein with known characteristic.
B. HDC Model Design
Fig. 7 presents the overview of BioHD [3] sequence search in the
high- dimensional space. The first step of BioHD is to map the
genome sequence into a high-dimensional space. BioHD assigns a
hypervector corresponding to each base alphabet Σ={𝐴,	𝐶, 𝐺, 𝑈} in
for DNA and Σ={𝐴,	𝐶, 𝐺, 𝑈} for RNA. The encoding module depends
on the data type and the genomics task. In terms of protein data,
BioHD assigns a hypervector representing each RNA base and then
combines them to create a hypervector representing each amino

acid. The amino acids’ hypervectors are combined by mapping each
protein sequence into a high-dimensional space. BioHD aggregates
all encoded protein sequences to generate a reference genome,
called HDC Library. An HDC library consists of several reference
hypervectors, where each hypervector memorizes thousands of
genome sequences in high-dimensional space. Similar to the hu-
man memorization that requires practice, BioHD iteratively checks
the correctness of memorized information in each library hyper-
vector to find the most refined hypervectors. During the sequence
searching, BioHD uses the same encoding to map a query sequence
into a hypervector. We perform a similarity computation between a
query and each reference hypervector. By searching for an exact or
approximate match, BioHD identifies a query’s closeness with
thousands of memorized patterns stored in each HDC library
hypervector.
C. Hardware Acceleration Design
The hardware design of work [3] is centered around a Processing
In-Memory (PIM) architecture. This architecture is designed to be
compatible with existing crossbar memory and supports all
essential BioHD operations natively in memory with minimal
modification on the array. Fig. 8 shows the architecture design of
PIM. Fig. 8 (A) shows an overview of the PIM architecture
consisting of 128 tiles. Each tile consists of 128 crossbar memory
blocks. Due to the existing challenges of crossbar memory, each
memory block is assumed to have a size of 1Kx1K. BioHD
consists of two types of memory blocks: encoding and distance
computing. Both blocks are the same conventional crossbar
array; they are organized in each tile to enable fast and parallel
sequence searching. As is shown Fig. 8 (B), the block sense
amplifiers are low-precision ADCs that are shared among several
memory blocks. Unlike the existing analog-based PIM, crossbar
memory takes up the majority of our architecture, and ADCs only
take up a tiny area. Fig. 8 (C) shows the first step of the encoding
that assigns a codebook to each amino acid. Fig. 8 (D) shows
that for a block with 1k-columns, each block stores 32
permutations of the acid hypervectors. Each 32-columns stores
all possible hypervectors that a protein in a specific position can
take. These hypervectors can be directly addressed using our
codebooks. Fig. 8 (E) shows a row-parallel Hamming computing
between a query and all reference hypervectors stored in the
memory. This work uses 32-bits windows to ensure 5-bit ADC
precision. To limit the cost of ADC blocks, we share ADCs among
multiple distance computing blocks. We use sample & hold (S+H)
circuit to record the matching line discharging current of each
block and use time multiplexing to share ADC among 128
memory blocks. Fig. 8 (F) shows row-parallel dot product
operation between a query and stored reference hypervectors.
Fig. 8 (G) shows the whole system’s working pipeline.

Table V. FPGA Resource Utilization on Xilinx Alveo U50 with
the Frequency is 200MHz and the Power Consumption is

29.8W
 LUT FF BRAM UltraRAM DSP

aIP 244.4K 101.7K 128 0 0
dIP 268.3K 122.8K 0 64 2048

HBM 4320 3496 16 0 9
Other 72.1K 80.6K 94 0 0
Total 589.1K 308.7K 238 64 2048

Fig. 6. Hyperdimensional graph reasoning (HGR) acceleration performance on different platforms.

Fig. 7. Hyperdimensional genomic sequence matching.

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

D. Results

For the hardware design, we use HSPICE for circuit-level simulations
to measure the energy consumption and performance of all the
BioHD operations in 28nm technology. We used System Verilog and
Synopsys Design Compiler to implement and synthesize the BioHD
controller. For parasitic, we used the same simulation setup
considered by work in. The interconnects are modeled in both circuit
and architecture levels. The robustness of all circuits has been
verified by considering 10% process variations on the size and
threshold voltage of transistors. Our PIM works with any bipolar
resistive technologies, which are the most common NVMS. To have
the highest similarity to commercially available 3D Xpoint, we adopt
the memristor device with a VTEAM model. The memristor’s model
parameters are chosen to produce a switching delay of 1ns, a
voltage pulse of 1V and 2V for RESET and SET operations to fit
practical devices.
 Table VI shows the detailed configurations of BioHD consisting
of 128 tiles. Each tile has 128 crossbar blocks. BioHD has two con-
figurations: Hamming computing that uses shared ADC blocks for
distance computing, and Dot Product computing (DOT), where the
distance is computed using row-parallel PIM arithmetic. In DOT- tile,
the crossbar memory takes most of the area and power consumption,
while in HAM-tile, ADCs are taking 28% and 15% of total area and

power consumption. Each HAM-tile (DOT-tile) takes 0.57𝑚𝑚2
(0.41𝑚𝑚2) area and consumes 1.07W (0.93W) power. The total
HAM-chip (DOT-chip) area and average power consumption are
73.52𝑚𝑚2 and 137.81W (53.04𝑚𝑚2 and 119.79W), respectively
[30]. All our evaluations are performed when BioHD provides the
same area in both configurations. Note that our HAM chip can be
configured to perform both Hamming distance and dot product
similarity, while DOT Chip is an optimized version that just supports
dot product similarity.
 Fig. 9 compares BioHD efficiency with other PIM accelerators. All
PIMs have the same area as BioHD in the 1-chip configuration. The
efficiency values are reported compared to GPU. We compute the
efficiency of PIM accelerator using our cycle-accuracy simulator. The
results are validated with the performance and efficiency reported on
each original paper. PipeLayer [6] and FloatPIM [7] are neural
network accelerators, but their operations can be used to accelerate
the sequence searching algorithm. Our evaluation shows that BioHD
provides significant efficiency improvement compared to PIM
architectures. This efficiency comes from: (i) BioHD capability in
revisiting alignment using HDC with hardware-friendly operations, (ii)
BioHD PIM architecture supporting highly parallel essential
operations, and (iii) data flow in BioHD that eliminates in- ternal data
movement.
 Fig. 9 also compares BioHD efficiency with DRAM-based
accelerators: Ambit [11], ComputeDRAM [17], and Newton [13].
DRAM-based PIMs are suitable to accelerate existing alignment
algorithms that rely on extensively parallel bitwise and arithmetic
computation. In contrast, these accelerators do not support
associative search, which is the key functionality of BioHD
computation. This makes DRAM-based solution ineffective for
BioHD acceleration. Our evaluation shows that, in the same area,
BioHD provides 7.3× and 12.0× (14.8× and 15.3×) faster and higher
energy efficiency com- pared to Newtown (ComputeDRAM).
7. CONCLUSION
In this paper, we summarize prior hardware-algorithm codesigns of
HDC accelerator targeting different machine leaning applications.

Acknowledgement:
This work was supported in part by DARPA Young Faculty Award,
National Science Foundation #2127780, #2319198, #2321840 and

Table VI. Detailed Configurations of BioHD
BioHD PIM Parameter

Component Param Spec Area Power
Crossbar

Array
size 1Mb (1kx1k) 3136um2 6.14mW

Sense Amp number 1k 49.2um2 0.09mW
Memory

Block number 1 3185.2um2 6.23mW

Hamming Computing (HAM)
Tile Memory number 128 blocks 0.40mm2 0.78W

ADC resolution 5-bits,
1.75GS/s 0.16mm2 0.14W

S+H number 128 857.6um2 14.97mW
Interconnect size 128x1k 0.01mm2 31.04mW

Controller number 1k/row 146.5um2 118.9mW
HAM-tile size 128Gb 0.52mm2 1.07W

Dot Product Computing (DOT)

Tile Memory number 128 blocks 0.40mm2 0.78mW

Interconnect size 1k/row 0.01mm2 31.04mW

Controller number 1 146.5 mm2 118.9mW

DOT-tile size 128Gb 0.41 mm2 0.93W

HAM Chip
number

size
128 Tiles

2GB
73.52 mm2 137.81W

DOT Chip
number

size
128 Tiles

2GB
53.04mm2 119.79W

Fig. 8. Overview of PIM-based BioHD architecture along with encoding and distance computing blocks.

Fig. 9. Hyperdimensional genomic sequence PIM comparison
with state of the art.

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

 IEEE CICC 2024

#2312517 , Semiconductor Research Corporation (SRC), Office of
Naval Research, grants #N00014-21-1-2225 and #N00014-22-1-
2067, the Air Force Office of Scientific Research under award
#FA9550-22-1-0253, and generous gifts from Xilinx and Cisco.

References:
[1] M. Imani et al., "Neural computation for robust and holographic
face detection." in DAC. ACM/IEEE, 2022.
[2] P. Poduval et al. "Adaptive neural recovery for highly robust
brain-like representation." in DAC. ACM/IEEE, 2022.
[3] Z. Zou et al., “BioHD: an efficient genome sequence search
platform using HyperDimensional memorization.” In Proceedings of
the 49th Annual International Symposium on Computer
Architecture.
[4] P. Poduval et al., "Graphd: Graph-based hyperdimensional
memorization for brain-like cognitive learning." Frontiers in
Neuroscience 16 (2022): 757125.
[5] P. Poduval et al., "Cognitive correlative encoding for genome
sequence matching in hyperdimensional system." in DAC.
ACM/IEEE, 2021.
[6] L.Song, et al,“Pipelayer:Apipelinedreram-basedacceler- ator for
deep learning,” HPCA, 2017.
[7] M. Imani, et al, “Floatpim: In-memory acceleration of deep
neural network training with high precision,” in ISCA. ACM,2019.
[8] H. Barkam et al., "Comprehensive Analysis of Hyperdimensional
Computing Against Gradient Based Attacks." in DATE. IEEE, 2023.
[9] H. Barkam et al., "HDGIM: Hyperdimensional Genome
Sequence Matching on Unreliable highly scaled FeFET," in DATE.
IEEE, 2023.
[10] Z. Zou et al., “EventHD: Robust and efficient hyperdimensional
learning with neuromorphic sensor,” Frontiers in Neuroscience,
2022.
[11] S. Angizi, et al, “Pim-aligner: a processing-in-mram platform for
biological sequence alignment,” DATE. IEEE, 2020.
[12] Z. Zou et al., "Scalable Edge-Based Hyperdimensional
Learning System with Brain-Like Neural Adaptation," SC21:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021.
[13] M. Hee, et al, “Newton: A dram-maker’s accelerator-in-memory
(aim) architecture for machine learning. in MICRO, IEEE, 2020.
[14] Y. Ni et al., "Efficient Off-Policy Reinforcement Learning via
Brain-Inspired Computing." in GLSVLSI. ACM, 2023.
[15] Y. Ni et al., "Neurally-Inspired Hyperdimensional Classification
for Efficient and Robust Biosignal Processing." in ICCAD. ACM,
2022.
[16] M. Issa et al., "Hyperdimensional Hybrid Learning on End-
Edge-Cloud Networks," in ICCD. IEEE, 2022.
[17] F. Gao, et al, “Computedram: In-memory compute using off-
the-shelf drams,” in MICRO. ACM/IEEE, 2019.
[18] Y. Ni et al., “HDPG: hyperdimensional policy-based
reinforcement learning for continuous control,” In Proceedings of
the 59th ACM/IEEE Design Automation Conference (DAC '22),
2022.
[19] S. Shahhosseini et al., "Flexible and Personalized Learning for
Wearable Health Applications using HyperDimensional Computing."
Proceedings of the Great Lakes Symposium on VLSI 2022. 2022.
[20] Y. Ni et al., "Algorithm-hardware co-design for efficient brain-
inspired hyperdimensional learning on edge." DATE. IEEE, 2022.
[21] Y. Ni et al., "Online Performance and Power Prediction for
Edge TPU via Comprehensive Characterization," DATE. IEEE,
2022.
[22] H. Lee et al., "Comprehensive Integration of Hyperdimensional
Computing with Deep Learning towards Neuro-Symbolic AI," 2023
60th ACM/IEEE Design Automation Conference (DAC), 2023.
[23] A. Hernández-Cano et al., "Onlinehd: Robust, efficient, and
single-pass online learning using hyperdimensional system." DATE.
IEEE, 2021.

[24] H. Chen et al. "DARL: Distributed Reconfigurable Accelerator
for Hyperdimensional Reinforcement Learning." Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided
Design. 2022.
[25] H. Chen et al., "Full Stack Parallel Online Hyperdimensional
Regression on FPGA," 2022 IEEE 40th International Conference on
Computer Design (ICCD), 2022.
[26] H. Chen et al., "Density-Aware Parallel Hyperdimensional
Genome Sequence Matching," 2022 IEEE 30th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022.
[27] A. Kazemi et al., "Achieving software-equivalent accuracy for
hyperdimensional computing with ferroelectric-based in-memory
computing." Scientific reports 12.1 (2022): 19201.
[28] M. Imani et al., "Dual: Acceleration of clustering algorithms
using digital-based processing in-memory." in MICRO. IEEE, 2020.
[29] H. Chen et al., "HyperGRAF: Hyperdimensional Graph-Based
Reasoning Acceleration on FPGA," 2023 33rd International
Conference on Field-Programmable Logic and Applications (FPL),
2023.
[30] X. Yin et al., "An Ultracompact Single‐Ferroelectric Field‐
Effect Transistor Binary and Multibit Associative Search Engine."
Advanced Intelligent Systems (2023).
[31] S. Shou et al., "SEE-MCAM: Scalable Multi-bit FeFET Content
Addressable Memories for Energy Efficient Associative Search."
Proceedings of the 42st IEEE/ACM International Conference on
Computer-Aided Design. 2023.
[32] C. Liu et al., "Cosime: Fefet based associative memory for in-
memory cosine similarity search." in ICCAD. IEEE/ACM, 2022.
[33] Kanerva, Pentti. "Hyperdimensional computing: An introduction
to computing in distributed representation with high-dimensional
random vectors." Cognitive computation 1 (2009): 139-159.
[34] M. Hersche et al., "Exploring embedding methods in binary
hyperdimensional computing: A case study for motor-imagery
based brain-computer interfaces." arXiv preprint arXiv:1812.05705
(2018).
[35] A. Manabat et al., "Performance analysis of hyperdimensional
computing for character recognition." 2019 International
Symposium on Multimedia and Communication Technology
(ISMAC). IEEE, 2019.
[36] Kang, Jaeyoung, et al. "RelHD: A Graph-based Learning on
FeFET with Hyperdimensional Computing." ICCD. IEEE, 2022.
[37] M. Imani et al., "Voicehd: Hyperdimensional computing for
efficient speech recognition." 2017 IEEE international conference
on rebooting computing (ICRC). IEEE, 2017.
[38] M. Imani et al., "Hdcluster: An accurate clustering using brain-
inspired high-dimensional computing." 2019 Design, Automation &
Test in Europe Conference \& Exhibition (DATE). IEEE, 2019.
[39] A. Rahimi et al., "Random features for large-scale kernel
machines." Advances in neural information processing systems 20
(2007).
[40] Cho, Hyungmin, et al. "Fa3c: Fpga-accelerated deep
reinforcement learning." ASPLOS. ACM, 2019.
[41] Meng, Yuan, et al. "Accelerating proximal policy optimization
on cpu-fpga heterogeneous platforms." FCCM. IEEE, 2020.
[42] Wang, Ying, et al. "A many-core accelerator design for on-chip
deep reinforcement learning." ICCAD. ACM, 2020.
[43] Watanabe, et al. "An FPGA-based on-device reinforcement
learning approach using online sequential learning." IPDPSW.
IEEE, 2021.
[44] Yang, Je, et al. "Fixar: A fixed-point deep reinforcement
learning platform with quantization-aware training and adaptive
parallelism." DAC. IEEE, 2021

20-1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 27,2024 at 08:15:55 UTC from IEEE Xplore. Restrictions apply.

