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ABSTRACT
Health and wellness applications increasingly rely on machine
learning techniques to learn end-user physiological and behavioral
patterns in everyday settings, posing two key challenges: inabil-
ity to perform on-device online learning for resource-constrained
wearables, and learning algorithms that support privacy-preserving
personalization. We exploit a Hyperdimensional computing (HDC)
solution for wearable devices that offers flexibility, high efficiency,
and performance while enabling on-device personalization and pri-
vacy protection. We evaluate the efficacy of our approach using
three case studies and show that our system improves performance
of training by up to 35.8× compared with the state-of-the-art while
offering a comparable accuracy.
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1 INTRODUCTION
Wearable devices play a significant role in health monitoring sys-
tems by continuouslymonitoring human physiological and physical
data [1]. Health and wellness applications increasingly rely on ma-
chine learning (ML) algorithms to capture the user’s behavioral and
physiological patterns [2], but pose two challenges: 1) inability to
perform on-device learning for resource-constrained wearables, as
ML workloads require significant computational power and stor-
age [3, 4], and 2) the need to develop on-device and online learn-
ing algorithms that support privacy-preserving personalization.
Nowadays, the majority of wearable devices (e.g., smart watches)
are multi-application and capable of interacting with users to col-
lect feedback and personalize their models over time to meet the
unique characteristics of each person, however, online training
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of ML models on wearable devices currently is not feasible using
state-of-the-art (SOTA) machine learning algorithms [5]. For these
reasons, alternative learning algorithms are required to deliver real-
time, low-power, and personalize services on wearable devices, and
therefore, it is desired to re-design the learning process with respect
to both algorithm and hardware.

Hyperdimensional computing (HDC) offers an alternative com-
putational [6, 7]. HDC is based on the understanding that the
human brain operates on high-dimensional representations. HDC
offers a well-suited solution for online learning and personaliza-
tion on resource-constrained devices since: (i) HDC models are
computationally efficient, highly parallel to train, and amenable to
hardware-level optimization [8, 9]. (ii) HDC can naturally enable on-
device online learning for wearable devices [10], thereby facilitating
privacy-preservation and personalization [11]. There have been
recent efforts [12–16] to deploy HDC algorithms to offer efficient
on-device learning using single-pass training. However, single-pass
training provides very weak classification accuracy compared to
online learning in HDC [10].

Furthermore, recent wearable solutions mainly focus on mon-
itoring vital signs, which has limitations for wellness prediction.
The data obtained from various signal sources might span multiple
dimensions across multiple scales and exhibit varying precision.
Some features may emerge due to users’ behavioral patterns and
context, which will impose a much higher degree of variation from
one user to another user. These variations result in degrading the
performance of general wearable health applications. Thus, it is
imperative to integrate personalized health-related data collected
from various sources. Existing on-device learning solutions [13–
17] fail to offer personalized learning for wearable devices. In ad-
dition, these solutions are targeted for specific applications and
platforms limiting their utility for multi-purpose wearable devices.
For example, Moin et al. [16] proposed a custom gesture recogni-
tion system, while Bhat et al. [17] proposed a DNN-based activity
recognition system based on Application Specific Integrated Circuit
(ASIC) platform, making the solutions application-specific. There-
fore, The literature lacks a comprehensive solution which is flexible
and platform-agnostic to run a variety of health applications, in
particular on multi-purpose wearables.

In this paper, we propose a flexible and personalized HDC-based
learning approach for wearable devices running health applications.
Our approach enables accurate online on-device training and avoids
model saturation by adopting and customizing the HDC training
strategy presented in [10] for resource-constrained wearable de-
vices. In summary, our main contributions are:

• We implement an online training framework for efficient and
accurate learning using HDC algorithms on both CPU and FPGA
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platforms. We present the HDC framework as a practical and flex-
ible solution for efficient on-device and online learning for wear-
able applications. We also demonstrate that on-device learning
enables personalization and user privacy protection for wearable
devices. The CPU implementation of our approach can be readily
implemented on existing off-the-shelf multi-purpose wearable
devices such as smartwatches.
• We demonstrate the effectiveness of our solution using three
case studies compared with SOTA learning algorithms. Our eval-
uation shows that our HDC-based system improves training
performance of the wearables by up to 35.8× compared with
DNN while providing comparable accuracy.

2 HYPERDIMENSIONAL CLASSIFICATION
We present a robust and lightweight hyperdimensional classifica-
tion. The first step in HDC is to encode data into a high-dimensional
space. Then, HDC performs a learning task over encoder data by
performing a single-pass training that generates a hypervector rep-
resenting each class. The inference task can performed by check-
ing the similarity of an encoded query to the class hypervector.
Let’s assume ®H1, ®H2 are two randomly generated hypervectors
( ®H ∈ {−1, +1}𝐷 ) and 𝛿 ( ®H1, ®H2) ≈ 0. HDC is based on a set of
primitives: (1) Bundling: is an addition of multiple hypervectors
into a single hypervector, ®R = ®V1 + ®V2, where ®V2 ∈ {0, 1}𝐷 and
𝐷 is the dimension of the HDC space. Unlike original space where
bundling act as an average operation, in high-dimensional space the
addition is memorization function. (2) Binding: associates multiple
orthogonal hypervectors (e.g., ®V1, ®V2) into a single hypervector
( ®R = ®V1 ∗ ®V2). The bound hypervector is a new object in HDC
space which is orthogonal to all input hypervectors (𝛿 ( ®R, ®V1) ≃ 0
and 𝛿 ( ®R, ®V2) ≃ 0). (3) Permutation: defined as a single rotational
shift. The permuted hypervector will be nearly orthogonal to its
original hypervector (𝛿 ( ®V1𝜌 ®V1) ≃ 0).

2.1 Online and Iterative Learning
We propose an adaptive training framework for efficient and ac-
curate learning in HDC. Our training identifies common patterns
during training and eliminates the saturation of the class hyper-
vectors during traditional single-pass training. Instead of naively
combining all encoded data points, our approach adds each en-
coded data to class hypervectors depending on how much new
information the pattern adds to class hypervectors. If a data point
already exists in a class hypervector, the framework will add no
or a tiny portion of data to the model to eliminate hypervector
saturation. Figure 1a shows the framework’s functionality during
adaptive initial training. Let’s assume ®H as a new training data
point. The framework computes the cosine similarity of ®H with a
class hypervector that has the same label as ®H . If the data point
corresponds to 𝑖𝑡ℎ class, we compute similarity of a data point with
®C𝑖 as: 𝛿 ( ®H , ®C𝑙 ) = ®H· ®C𝑙

∥ ®H ∥· ∥ ®C𝑙 ∥
where ®H · ®C𝑙 is a dot product between

a query and class hypervector ( A ). The 𝛿 value shows the sim-
ilarity of a data point to its class hypervector. Instead of naively
adding data point to the model, the framework updates the model
based on the 𝛿 similarity. For example, if an input data has label 𝑙 ,
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Figure 1: (a) HDC Online Learning (b) Iterative Learning.

the model updates as follows ( B ).

®C𝑙 ← ®C𝑙 + 𝜂 (1 − 𝛿𝑙 ) × ®H (1)

where 𝜂 is a learning rate. A large 𝛿𝑙 indicates that the input is a
common data point which is already exist in the model. Therefore,
our update adds a very small portion of encoded query to model to
eliminate model saturation (1 − 𝛿𝑙 ≃ 0). However, small 𝛿𝑙 means
that the query has new pattern which does not exist in the model.
Thus, the model is updated with a larger factor (1 − 𝛿𝑙 ≃ 1).

Although single-pass training is suitable for fast and ultra-efficient
learning, embedded devices may have enough resources to perform
more accurate learning tasks. Our framework supports retraining
to enhance the quality of the model. Instead of starting to retrain
from a naive initial model, the framework retraining starts from
the initial adaptive model (explained in Section 2.1). The frame-
work’s initial model already considered the weight of each input
data during single-pass training. Therefore, the framework retrain-
ing starts from a well-trained initial model with relatively high
classification accuracy. This enables the framework to retrain the
model with a much lower number of iterations, resulting in fast
convergence. Figure 1b shows the framework functionality during
adaptive retraining. the framework follows a similar learning pro-
cedure as initial training. For each training data point, say 𝐻 , the
framework checks the similarity of data with all class hypervectors
in the model ( C ) and updates the model for each miss-prediction
( D ). Retraining examines if the model correctly returns the label 𝑙
for an encoded query ®H . If the model mispredicts it as label 𝑙 ′, the
model updates as follows ( E ).

®C𝑙 ← ®C𝑙 + 𝜂 (𝛿𝑙 ′ − 𝛿𝑙 ) × ®H
®C𝑙 ′ ← ®C𝑙 ′ − 𝜂 (𝛿𝑙 ′ − 𝛿𝑙 ) × ®H

(2)

where 𝛿𝑙 = 𝛿 (𝐻, ®C𝑙 ) and 𝛿𝑙 ′ = 𝛿 (𝐻, ®C𝑙 ′) are the similarity of data
with correct and miss-predicted classes, respectively. This ensures
that we update the model based on how far a train data point is
miss-classified with the current model. In case of of a very far miss-
prediction, 𝛿𝑙 ′ >> 𝛿𝑙 , the framework retraining makes a major
changes on the mode. While in case of marginal miss-prediction,
𝛿𝑙 ′ ≃ 𝛿𝑙 , the update makes smaller changes on the model.

2.2 HDC for Wearable Devices
Figure 2 shows our proposed monitoring system. The system col-
lects the raw data from sensors such as photoplethysmography
(PPG), etc. Self-reported labels are collected through the wearable’s
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Figure 2: HDC for Health monitoring system architecture.

user interface (e.g., an smartwatch’s touchscreen) from subjects
in-the-moment to personalize the model for each individual over
time. The collected sensory data is processed through two ma-
jor steps at the wearable device: (a) Preprocessing and Feature
Extraction, (b) HDC Classifier. The preparation includes data
integration, data cleaning, and data reduction. Feature generation
is the next step which derives values intended to be informative
and non-redundant. It facilitates more accurate subsequent learn-
ing. The HDC classifier is the final step where the training and
inference phase are performed. During the training, our framework
provides single-shot and iterative training known as HD-Online and
HD-Iterative, respectively. HD-Online identifies common patterns
within a single-pass training. This results in learning the model as
input data comes from the sensors. On the other hand, HD-Iterative
offers retraining to enhance the quality of the model.

3 EVALUATION AND ANALYSIS
We implement the HD-based monitoring system on two embedded
platforms: Raspberry Pi 3B+ using ARM CPU and Xilinx Kintex 7
FPGA. We implement HD functionality on FPGA using Verilog and
synthesize it based on a SOTA FPGA framework [7]. We demon-
strate the effectiveness of our proposed system with three case
studies, including HAR, PM, and SM applications. In the following,
we evaluate our proposed system’s accuracy, performance, and en-
ergy efficiency on these CPU and FPGA. We compare HD algorithm
accuracy against SOTA learning algorithms, including Deep Neural
Network (DNN), Support Vector Machine (SVM). DNN and SVM
models are trained with Tensorflow and the Scikit-learn library,
respectively. We use the common practice of the grid search to iden-
tify the best hyperparameters for each model. The neural network
architecture consists two hidden layers with 512, and 128 neurons.
The HD algorithm is trained using a single-pass (HD-Online) and
iterative (HD-Iterative) way using 𝐷 = 4𝑘 . We evaluate our pro-
posed system using three health case studies: Pain Monitoring (PM),
Stress Monitoring (SM), Human Activity Recognition (HAR).

3.1 Accuracy Analysis
In this subsection, we demonstrate the prediction accuracy of the
HD algorithm through experimental comparisons against SOTA
learning algorithms. We demonstrate how personalization can be
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HD-Iterative HD-Online SVM DNN

Figure 3: HD vs SOTA accuracy analysis.

Table 1: Accuracy Analysis for the Personalized model vs. the
General model for the Stress monitoring application.

Model Strategy S1 S2 S3 S4 S5 S6

Pers. Online 77.2 % 78.2% 79.2% 64.6% 68.5% 64.9%
Iterative 85.4% 87.4% 88.2% 79.6% 82.9% 79.6%

Gen. Online 50.6% 49.9% 51.8% 48.3% 50.1% 59.0%
Iterative 72.6% 62.9% 73.6% 74.5% 74.6% 76.6%

achieved using the HDC-based classifiers. We first train the models
based on the collected data from all subjects. Figure 3 shows that the
HD approach provides comparable accuracy to the SOTA learning
algorithms for three health monitoring applications. We report the
results for HD algorithm for both iterative and online strategies.
The HD-Iterative results show errors of 0.03% and 0.02% in compar-
ison with DNN the algorithm for the HAR and Stress Monitoring
applications, respectively. However, HD-iterative is even 0.1%more
accurate than DNN algorithm for the PM application. On the other
hand, the HD-Online method leads to 6.9%, 8.8%, and 2.7% accuracy
degradation compared with the DNN algorithm for HAR, PM, and
SM, respectively. Our evaluation shows HD-iterative leads to 4.4%,
0.1% accuracy improvement compared with SVM learning algo-
rithm for HAR and PM application, respectively. While, HD-Online
results in 2%, 8% accuracy error in comparison with SVM algorithm.

The bias in physiological data can be different for personal or
general dataset [1]. We report the effect of personalization and how
it improves the monitoring accuracy. We evaluate the personaliza-
tion considering six participants (S1-S6) for the Stress monitoring
application. To train the General model, we exclude the data from
one subject and then train the model using data from all other
subjects. We test the model on half of the data from the excluded
subject (selected randomly). To train the Personalized model, we
use the first half of each subject’s data for training (to emulate the
progression of time) and then test it with the second half of the
subject’s data. Table 1 shows Personalized model performance in
comparison with General model. The results show an average of
20.48% and 11.38% improvement on accuracy when personalization
is used for both HD-Online and HD-Iterative, respectively.

3.2 Performance Analysis
We report the performance of the HD learning algorithm during the
training and inference phase on the platforms mentioned above. We
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Figure 4: Training time for HD vs. SOTA on CPU.

evaluate three health monitoring applications, including HAR, PM,
and SM, with HD and SOTA learning algorithms. Figure 4 shows
that HD algorithm provides significant speedup for training time
compared with other algorithms. HD-Iterative algorithm signifi-
cantly reduces training time by 4.8×, 15.3×, and 15.8× compared
with the DNN algorithm for HAR, PM and SM applications, respec-
tively. On the other hand, HD-Online algorithm results in better
training time where it provides 14.6×, 35.8×, and 23.81× compared
with DNN algorithm for HAR, PM, and SM applications, respec-
tively. This speedup comes from HD-Online algorithm capability
in lowering number of required training iterations. Table 2 also
compares HD inference and training phase performance with the
SOTA learning algorithms. HD algorithm presents 32×, 43.5×, and
4.29× improvement in inference time compared with SVM learning
algorithm for HAR, PM, and SM, respectively. In addition, Figure 5
shows performance evaluation for HD algorithm during training
and inference on the FPGA platform. HD algorithm can achieve up
to 21.4× and 10.6× speedup during training and inference, respec-
tively. Comparing the results between the FPGA and CPU platforms
shows the FPGA design significantly improves the performance.
mainly because CPUs use the same number of resources to per-
form 1-bit or 8-bit arithmetic operations, which limits the degree
of parallelism in the CPU [7]. In contrast, FPGAs are significantly
efficient for implementing low-precision arithmetic operations [7].

4 CONCLUSIONS
We proposed an adaptive HDC training framework for health mon-
itoring systems that achieves fast, energy-efficient, and accurate
on-device training/inference, and also enables personalization and
privacy protection for wearable devices. We demonstrated the effi-
cacy of our HDC approach using three realistic wearable healthcare

Table 2: Performance analysis HD vs. SOTA on CPU.

Execution Time (sec)
HD-Iterative HD-Online SVM DNN

HAR Training 3.10 1.02 1.58 15.10
Inference 0.01 0.01 0.32 0.01

PM Training 3.59 1.54 29.67 55.25
Inference 0.08 0.08 3.48 0.35

SM Training 1.89 1.26 3.74 30.17
Inference 0.97 0.98 4.21 0.45
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Figure 5: Performance of HD-iterative vs. DNN on FPGA.

studies, achieving better performance for training by up to 35.8×
compared to state-of-the-art DNN algorithms while achieving com-
parable accuracy. We believe that our HDC-based framework is a
promising approach to meet the low-power, personalization, and
privacy requirements for health monitoring applications.
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