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ABSTRACT

Reinforcement Learning (RL) has opened up new opportunities

to enhance existing smart systems that generally include a com-

plex decision-making process. However, modern RL algorithms,

e.g., Deep Q-Networks (DQN), are based on deep neural networks,

resulting in high computational costs. In this paper, we propose

QHD, an o�-policy value-based Hyperdimensional Reinforcement

Learning, that mimics brain properties toward robust and real-

time learning. QHD relies on a lightweight brain-inspired model

to learn an optimal policy in an unknown environment. On both

desktop and power-limited embedded platforms, QHD achieves

signi�cantly better overall e�ciency than DQN while providing

higher or comparable rewards. QHD is also suitable for highly-

e�cient reinforcement learning with great potential for online and

real-time learning. Our solution supports a small experience replay

batch size that provides 12.3× speedup compared to DQN while en-

suring minimal quality loss. Our evaluation shows QHD capability

for real-time learning, providing 34.6× speedup and signi�cantly

better quality of learning than DQN.

CCS CONCEPTS

• Computing methodologies→Machine learning; Intelligent

agents; • Computer systems organization→ Embedded systems.
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1 INTRODUCTION

Smart systems and services generally reside in a highly-dynamic

yet unknown environment and require intelligent algorithms to

make optimal decisions with little prior knowledge. In recent years,

Reinforcement Learning (RL) has opened up new opportunities to

solve a wide range of complex predictions and decision-making

tasks that were previously out of reach for a machine [1]. Compared

to supervised and unsupervised learning methods, RL does not

have direct access to labeled training data. Learning through agent-

environment interaction makes RL appealing to dynamic control

and automated system optimization such as smart transportation

and smart grid, where the optimal policy is hard to de�ne and is

constantly changing with its environment [1, 2].

RL methods are generally categorized into policy-based and

value-based RL. The policy-based method directly parameterizes

the policy and optimizes it via on-policy model training. On the

other hand, value-based RL supports o�-policy training, i.e., all past

interactions can be used toward learning. Therefore, value-based

RL is much more sample-e�cient. As one of the most popular value-

based methods, Deep Q-Networks (DQN) exploits DNN to learn an

approximation of the Q-value for every pair of actions and state.

Recently, there have been active developments for various DQN

applications such as playing computer games [3], Genomics [4], and

smart city [2, 5]. DQN is capable of learning complex tasks without

modeling the environment, but its power comes at a price, i.e., the

huge computation cost and long learning time. This makes it only

suitable for powerful computers in the cloud. However, o�oading

RL to the cloud not only leads to extra communication overhead

but also causes security and privacy concerns.

Therefore, we redesign the RL algorithm by exploiting the brain-

inspired highly-e�cient HyperDimensional Computing (HDC) [6].

HDC is motivated by how human brains process di�erent kinds of

inputs, i.e., brains express information using a vast number of neu-

rons. The information is then processed and memorized in a holistic

and high-dimensional way. For inputs in the lower-dimensional

space, HDC encodes them to vectors of several thousand dimen-

sions, i.e., hypervectors. The learning process is based on highly-

parallelizable operations of hypervectors. HDC has been applied as

a lightweight machine learning solution to multiple applications

where it is capable of achieving comparable accuracy to DNN with

signi�cantly higher e�ciency [7, 8].
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However, current HDC solutions mainly focus on traditional

classi�cation and clustering. In contrast, in this paper, we propose

QHD, a value-based Hyperdimensional Reinforcement Learning

algorithm with o�-policy training, which mimics brain properties

towards robust and real-time learning. The main contributions of

the paper are listed as follows:

• To the best of our knowledge, QHD is the �rst o�-policy value-

based hyperdimensional RL algorithm targeting discrete action

space.QHD relies on lightweight HDCmodels to learn an optimal

policy in an unknown environment. Our algorithm maps state-

action space into high-dimensional space for e�cient decision-

making via novel brain-inspired HDC encoding and self-learning.

• Thanks to the brain-like hyperdimensional operations, QHD can

utilize even a small amount of available training data. It thereby

supports a much smaller training batch and experience bu�er

than DQN while still providing high-quality results.

• We compare our QHD accuracy and e�ciency with the DQN

algorithm for multiple dynamic control tasks. Our evaluation

shows that QHD achieves signi�cantly better overall e�ciency

than DQN, especially on the power-limited embedded platform,

e.g., up to about 15× speedup. For real-time learning, QHD pro-

vides 34.6× speedup and signi�cantly better quality.

2 RELATEDWORK

Reinforcement Learning: In recent years, RL algorithms have

obtained dramatically more attention because of the advancement

in deep learning. For example, DQN greatly expands the application

of RL to �elds like computer games [3, 9], transportation optimiza-

tion [2, 10], and health care [11, 12]. In [10], researchers focus on

driver dispatch optimization within online ride-sharing services.

They use DQN to learn a policy for matching available drivers and

users to maximize the success rate while minimizing the wait time.

All works above utilize DNN to handle complex agent-environment

interactions, so they are computationally intensive with insu�cient

e�ciency. In contrast, we propose a brain-inspired reinforcement

learning solution with inherent e�ciency and robustness.

Hyperdimensional Computing: Prior HDC works mainly pro-

vide solutions to classi�cation and cognitive tasks, such as graph

reasoning [13], bio-signal processing [7, 8], speech recognition [14],

neuromorphic sensing [15] andmulti-sensor signal classi�cation [16].

In these highlighted applications, HDC has outperformed state-of-

the-art learning solutions, e.g., support vector machines [14] and

neural networks [16]. Recent orthogonal work proposes an HDC-

based policy-based RL speci�cally for continuous control tasks [17].

However, this work does not provide support for RL tasks with

discrete action space. In addition, as mentioned in Section 1, policy-

based RL methods are less sample-e�cient due to the lack of o�-

policy training. Unlike all prior works, this paper is the �rst e�ort

focusing on hyperdimensional o�-policy value-based RL.

3 QHD: HYPERDIMENSIONAL Q-LEARNING

3.1 Overview

Fig. 1 shows an overview of QHD supporting hyperdimensional

reinforcement learning. In our RL task, there are two components

(Agent and Environment) and three variables (Action, State, and

Reward). Fig. 1(a) exploits a Cartpole example to illustrate these
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Figure 1: Overview of QHD reinforcement learning.
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Figure 2: HDC encoding with complex-valued position hy-

pervectors (HVs).

components and variables. As shown in Fig. 1, the interaction be-

tween the agent and environment forms a loop in which the action

taken based on the current state leads to the next state and reward.

The trajectory of each episode is saved in local memory for later

learning. In Fig. 1(b), we provide an overview of QHD algorithm

guiding the agent in the decision-making process.

3.2 QHD Hyperdimensional Encoding

QHD starts by mapping the current state vector from the original

to high-dimensional space, i.e., hypervector encoding. Notice that

we can create a large number of near-orthogonal hypervectors

through random sampling, i.e., their dot product ®d1 · ®d2 ≈ 0. Our

solution encodes inputs using hypervectors with random exponen-

tial elements, e.g., ®d1 belongs to {48\ : \ ∈ [−c, c]}� . � is the

dimensionality of these hypervectors.

As Fig. 2 shows, through well-de�ned hypervector operations,

the original information is evenly distributed across all hypervec-

tor elements, i.e., a holographic representation. The advantage of

being holographic is that we can accumulate information by sim-

ply combining two hypervectors. The complex-valued position

hypervectors used in this paper enable the encoder to capture the

correlation between input features in �ner granularity.

Next, we de�ne the following HDC mathematics that manipu-

lates input information in high-dimensional space:

Continuous Binding: The goal of binding is to associate items

in hyperspace. Assuming we have an =-element state vector at

time step C in the RL tasks: (C = {B1, B2, . . . , B=}. Our encoding gen-

erates a random exponential hypervector for each state element

{ ®d1, ®d2, · · · , ®d=} and then associates state elements with these hy-

pervectors: ®SC = ®d B1
1

∗ ®d B2
2

∗ · · · ∗ ®d B=
= . We de�ne ®d

B:
:

to be the

component-wise exponential of ®d: .

Bundling: This operation stands for component-wise addition

of hypervectors. The bundling operation is the core of memo-

rization for HDC models, in which the information from multi-

ple hypervectors is saved into one single hypervector. The bun-

dled hypervector is similar to every component hypervector, i.e.,

( ®d1 + ®d2) · ®d1 >> 0. Thus, we represent sets using the bundling

450



E�icient O�-Policy Reinforcement Learning via Brain-Inspired Computing GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

operation. Bundling of several encoded states results in a model

hypervector: ®M =
®S1 + ®S2 + · · · + ®S< . In Section 3.3, we leverage

a weighted bundling to represent it in high-dimensional space, i.e.,
®M = U1 ®S1 +U2 ®S2 + · · · +U< ®S< . The Us are learned via HDC-based

regression.

Hypervector Similarity: Our HDC encoder aims at preserving

the distance relationship among inputs. It maps similar input state

vectors to similar locations in the high-dimensional space, i.e., the

similarity between encoded hypervectors is close to 1. To verify this,

we de�ne a hypervector similaritymetric: X ( ®d G · ®d ~) = ®d G · ®d †~/� ,

where ®d †~ is the element-wise conjugate. Then, assuming G ≈ ~,

we have: ®d G · ®d †~/� = �−1∑
3 4

8\3 (~−G ) ≈ 1.

3.3 QHD Hyperdimensional Regression

We develop a regression model based on hyperdimensional math-

ematics. Our regression consists of multiple model hypervectors

{ ®M1, ®M2, . . . , ®M=}, where = is the size of the action space. For

evaluation of each action at time step C , we only select one of the

model hypervectors ®M� that corresponds to a certain action�, and

the regression is operated on the current-step state hypervector
®SC . These model hypervectors are initialized to all zero elements

and have the same dimensionality as the encoded state hypervec-

tor, i.e., ®M� ∈ {0}D . In regression, the true value is given by the

ideal Q-function, and we use hyperdimensional regression to ap-

proximately calculate the Q-value. We explain the ground truth for

Q-value in Section 3.4 when we introduceQHD. On the other hand,

the approximated Q-value for action � equals the real component

in the dot product between the model hypervector and the encoded

state hypervector: @?A43 = A40; ( ®M� · ®S †/�), where ®S † is a con-

jugate of the encoded query with complex-valued elements (recall

Section 3.2). As for the regression model update, we use the error

between @?A43 and @CAD4 (ground truth). We either add or subtract

a portion of the state hypervector to the model, weighted by the

regression error: ®M� =
®M� + V (@CAD4 −@?A43 ) ×

®S. This equation

ensures that the model gets updated more aggressively for higher

prediction error rates (@CAD4 − @?A43 ≫ 0). The lightweight opera-

tions in our regression design, such as component-wise addition,

contribute to the fast learning process for QHD.

3.4 Hyperdimensional Value-based
Reinforcement Learning

In this section, we present the details for our QHD, a hyperdimen-

sional Q-learning algorithm. We start our introduction with how

agents with QHD make decisions at each time step. In QHD, we

use a greedy policy that prefers actions with higher Q-values. How-

ever, it is crucial to balance the exploration of the environment

and the exploitation of the learned model. We combine a random

exploration strategy with the greedy policy, i.e., n-decay policy.

Assuming the action space A and time step C :

�C =

{

random action � ∈ A, with probability n

0A6<0G�∈A& ((C , �), with probability 1 − n
(1)

The probability of selecting random actions will gradually drop

after the agent explores and learns for several episodes. In experi-

ments, we use a rate of changing n-decay less than 1; this ensures

that QHD agents start to trust their learned model more while

gradually lessening the importance of exploration. In the equa-

tion above, & ((C , �) is a hyperdimensional regression model that

returns approximated Q-values for input action-state pairs. Once

an action �C is chosen by QHD, the agent interacts with the envi-

ronment. We then obtain the new state (C+1 for the agent and the

feedback reward 'C from the environment. At the next time step

C + 1, QHD selects another action �C+1. This chain of actions and

feedbacks form a trajectory or an episode until some termination

conditions are met. To train an RL algorithm, these episodes or past

experiences are usually saved to local memory as training samples.

More speci�cally, we save a tuple of four elements for each step in

the experience replay bu�er: ((C , �C , 'C , (C+1).

In DQN, the RL training process and parameter update are based

on DNN back-propagation, while the training inQHD utilizes more

e�cient hypervector operations. The regression model in QHD is

trained at the end of each time step after saving current information

to the replay bu�er. As in the DQN training process, we apply a

strategy called experience replay. The experience replays in QHD

samples a training batch and uses it for the regression model update.

The training batch includes multiple tuples of past experiences.

Now assume we sample a one-step experience tuple from past

trajectories to train our QHD, i.e., ((C , �C , 'C , (C+1). In Section 3.3,

we introduce the regression model update based on the approxima-

tion error. We �rst encode the input state (C to the hypervector ®SC
and the predicted value @C_?A43 is simply calculated as:

@C_?A43 = Q((C , �C ) = A40; ( ®M�C
· ®S †

C /�) (2)
For regression training, we need a ground truth @C_CAD4 . We

cannot directly obtain the true Q-value because RL is not typical

supervised learning. For time step C , the feedback is the one-step

reward 'C while the Q-value is the expectation of accumulated

rewards. The method to connect these two values is called the

Bellman Equation or Dynamic Programming Equation [18]. Since

most RL tasks can be viewed as a Markov Decision Process (MDP),

the Bellman equation gives a recursive expression for the Q-value

at step C , the expected sum of current rewards, and the Q-value

for step C + 1. To learn an optimal Q-function, we use the Bellman

optimality equation as shown below:

@C_CAD4 = 'C + W<0G�Q
′ ((C+1, �) (3)

Recall that our objective in QHD is to achieve optimal policy

and maximize the accumulated rewards within one episode. The

Bellman optimality equation states that to achieve optimal results

for the whole task, we need to optimize each sub-task. Thus, the true

value@C_CAD4 is the sum of'C and themax next-stepQ-value. Instead

of using model Q to calculate the maximum next-step Q-value, we

use a delayed model Q′ which gets updated periodically using

parameters in Q. This method is called Double Q-learning [19]; it

stabilizes the learning process and avoids the overestimation of

Q-value caused by the maximization in the Bellman equation. We

also include a reward decay term W that adjusts the e�ect of future

rewards on the current step Q-value.

After obtaining the predicted Q-value and true Q-value, we per-

form regressionmodel updates.We update themodel corresponding

to the action taken, using the regression error @C_CAD4 −@C_?A43 and

the encoded state hypervector. The learning rate is V .

®M�C+1
=

®M�C
+ V (@C_CAD4 − @C_?A43 ) ×

®SC (4)
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Figure 3: Final reward and goal-achieved runtime for DQN and QHD.
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4 EXPERIMENTAL RESULT

4.1 Experiment Settings

We implement our QHD algorithm using Python on both desktop

(Intel Core-i7 10700 with 65W TDP) and embedded hardware plat-

forms (RaspberryPi 4 with 6W TDP). We validate the functionality

of QHD with multiple control tasks in the OpenAI Gym [9]. For

comparison, we use the DQN algorithm for the same tasks in our

evaluation. In the following subsections, we compare these two

methods’ learning performance and e�ciency in all tasks.

The regression model we used in QHD has dimensionality � =

6000 unless stated otherwise. This dimensionality setting provides

us with a balance between learning quality and runtime cost; a

larger dimensionality will generally lead to higher rewards achieved

in the RL tasks with the cost of larger computation. The DQN is

powered by a neural network with two hidden layers. The �rst

layer has 128 neurons, and the second one has 256; except in the

LunarLander task, where we use 64 neurons for the �rst layer and

128 for the second layer. The experience replay is enabled for model

training in both methods, and we assume nearly unlimited replay

bu�er capacity for rewards and runtime comparison. We select

di�erent parameters for sampling training batches to ensure the

best learning quality for both methods. The QHD training batch

size is 4 for Acrobot/Cartpole and 10 for LunarLander, and the DQN

training batch size is 64 for all tasks. Rewards and runtime results

for both methods are averaged over multiple trials.

Task Acrobot Cartpole LunarLander

Algorithm DQN QHD DQN QHD DQN QHD

Desktop CPU

)6>0; (s)
815 82 36 11 5379 2740

RaspberryPi

)6>0; (s)
7041 476 435 72 51532 14483

Scale Ratio 8.6 5.8 12.3 6.8 9.6 5.3

Table 1: QHD and DQN goal-achieved runtime ()6>0; ) com-

parison on both desktop and embedded platforms

4.2 RL Rewards & Runtime comparison

Fig. 3 compares the performance of DQN and QHD over three

popular OpenAI control tasks. As shown in Fig. 3(a) and 4, QHD

achieves signi�cantly higher �nal rewards in Cartpole compared

to DQN. Within 200 episodes, QHD provides an averaged episodic

reward over 660, which is nearly 4× higher than DQN. In the early

episodes, this may lead to smaller rewards; but after the warm-up,

QHD can quickly learn from accumulated experience and surpass

DQN. Notice that considering the total execution time (shown in

Fig. 4b), QHD is signi�cantly faster than DQN and reaches higher

rewards within the same amount of time. We also present the result

for Acrobot in Fig. 3(b) and 5. Our QHD provides notably better

learning e�ciency compared to DQN, e.g., about 10× faster in terms

of runtime and 2× fewer number of episodes. For LunarLander, we

compare the RL performance and runtime in Fig. 3(c). It shows that

compared to DQN, our QHD achieves the goal nearly 400 episodes

earlier than DQN and about 2600 seconds (2 times) faster in runtime.

In Table 1, we collect the results for the implementation of QHD

and DQN on embedded CPU. We show that the e�ciency bene�t

of our algorithm remains signi�cant in a power-limited environ-

ment. Thanks to the lightweight QHD learning process and the

hypervector representation, our algorithm scales better than the

deep network structure in DQN, i.e., a constantly smaller runtime

scale ratio. In addition, the speedup brought by QHD is about 15×

in Acrobot, 6× in Cartpole, and 3.55× in LunarLander.

4.3 Evaluate the e�ect of training batch size

Both QHD and DQN rely on experience replay, and since the ex-

perience replay bu�er is ideally in�nite, we need to sample the

training dataset from the large replay bu�er with a preset batch

size. This parameter is rather crucial because it controls how much

past experience is available for the agent to learn from, thereby

deeply in�uencing the learning quality. A larger batch size pre-

vents the agent from forgetting past experiences while bringing

greater costs. Our QHD, on the other hand, aims to fully utilize the

provided training samples at each step. In Fig. 6, we explore the
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e�ect of replay batch size on both methods. Fig. 6a compares the

average rewards for the last 100 episodes, and it is clear that our

QHD performs signi�cantly better. For example, when the batch

size is 2, QHD can still achieve the goal with an average of -102.9

rewards. On the other hand, DQN performs poorly with a reward of

-480.9. This means that DQN does not e�ciently utilize the limited

available training samples.

Apart from better performance, our QHD also provides higher

e�ciency. In Fig. 6(b), we provide both the QHD runtime for 500

episodes andwhen the goal is achieved. For DQN, only total runtime

is provided because DQN cannot achieve the goal with small batch

sizes from 2 to 30. OurQHD is constantly faster: with the batch size

of 2 (15), our QHD is about 6.5× (1.7×) faster than DQN in terms of

total runtime. Focusing on the actual runtime when achieving the

target, QHD shows an even larger improvement, e.g., the speedup

is about 12.3× (2.6×) with a batch size of 2 (30).

4.4 QHD vs. DQN with Limited Size of
Experience Replay Bu�er

In the above sections, we set the RL experience replay to have

in�nite capacity, i.e., the agent has access to all previous experiences

during the training. However, in practical implementations, the

memory available for experience replay is limited due to energy and

space budgets. Thus, in this section, we evaluate the performance

of our QHD with a tighter cap on the maximum replay bu�er size

and compare it to the DQN results.

In Fig. 7(a), we present the average reward achieved by both

methods under di�erent bu�er sizes. The reward is averaged over

the last 100 episodes. When collecting these results, we �x the

training batch size; the batch size is 4 for QHD and 64 for DQN.

The �gure shows that DQN performs poorly when the bu�er size

is 64 and 128, with an average reward of -500. However, our QHD

can reach that goal even with a bu�er size as large as its batch size.

These results show that QHD can perform RL tasks with online

learning, i.e., a tiny replay bu�er.

We also take one step further to explore the QHD capability

of real-time learning. We set both the batch and bu�er sizes to 1,

which means the agent will learn based on only the current sample.

We use DQN with a 256 bu�er size and 64 batch size as an online-

learning comparison. As shown in Fig. 7(b), with a larger bu�er and

batch size, DQN achieves signi�cantly lower rewards (-345.4). For a

500-episode training, our QHD achieves average rewards of -113.7

using 83 seconds, which leads to a 34.6× speedup in total runtime.

5 CONCLUSION

We propose a novel lightweight value-based o�-policy RL algorithm

based on brain-inspired HDC. QHD utilizes HDC for high-quality
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Figure 7: QHD learning e�ciency with tiny replay bu�er.

Q-value approximation and self-learning agent training. Our evalu-

ation of several tasks shows that QHD provides signi�cantly better

e�ciency and learning quality than DQN.
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