
Efficient Exploration in Edge-Friendly Hyperdimensional
Reinforcement Learning

Yang Ni*
yni3@uci.edu

University of California, Irvine
Irvine, California, USA

William Youngwoo Chung*
chungwy1@uci.edu

University of California, Irvine
Irvine, California, USA

Samuel Cho
samuelc7@uci.edu

University of California, Irvine
Irvine, California, USA

Zhuowen Zou
zhuowez1@uci.edu

University of California, Irvine
Irvine, California, USA

Mohsen Imani
m.imani@uci.edu

University of California, Irvine
Irvine, California, USA

ABSTRACT
Integrating deep learning with Reinforcement Learning (RL) results
in algorithms that achieve human-like learning in complex yet un-
known environments via a process of trial and error. Despite the
advancements, the computational costs associated with deep learn-
ing become a major drawback. This paper proposes a revamped
Q-learning algorithm powered by Hyperdimensional Computing
(HDC), targeting more efficient and adaptive exploration. We in-
troduce a solution leveraging model uncertainty to navigate agent
exploration. Our evaluation shows that the proposed algorithm is
a significant enhancement in learning quality and efficiency com-
pared to previous HDC-based algorithms, achieving more than 330
more rewards with small overheads in computation. In addition,
it maintains an edge over DNN-based alternatives by ensuring re-
duced runtime costs and improved policy learning, achieving up to
6.9× faster learning.

CCS CONCEPTS
• Computing methodologies→Machine learning; Intelligent
agents; • Computer systems organization→ Embedded systems.

KEYWORDS
Reinforcement Learning, Agent Exploration, Hyperdimensional
Computing, Brain-inspired Computing

ACM Reference Format:
YangNi*,WilliamYoungwooChung*, Samuel Cho, ZhuowenZou, andMohsen
Imani. 2024. Efficient Exploration in Edge-Friendly Hyperdimensional Rein-
forcement Learning. In Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24),
June 12–14, 2024, Clearwater, FL, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3649476.3658760

*These authors contributed equally to this work.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658760

1 INTRODUCTION
Smart systems on edge operate in constantly changing environ-
ments with diverse needs, where intelligent algorithms are required
to ensure optimal decision-making without explicit prior knowl-
edge [14]. RL is one such algorithm that focuses on solving sequen-
tial decision-making problems, where the agent learns through trial
and error, similar to human beings. RL agents utilize the feedback
from the environment to improve their policies and maximize the
accumulated returned rewards. The combination of deep learning
and RL has led to a wide range of algorithms capable of learning
in environments with complex action and state spaces. Take the
Deep-Q-Network (DQN) as an example, the unscalable Q-table in
traditional algorithms [43] is replaced with a Deep Neural Network
(DNN) [24]. However, utilizing DNN results in high computational
costs that are less friendly to resource-limited devices. In fact, RL
agents are frequently deployed in the edge environment for tasks
like smart transportation and healthcare [11, 19].

Recent work has proposed amore efficient and hardware-friendly
HDC-based RL algorithm [27]. HDC is motivated by how brains rep-
resent information using neural activities in large dimensions [17].
At the functional level, it achieves human-like memorization and
reasoning via operations on high-dimensional vectors in the di-
mension of several thousand, i.e., hypervectors [15]. More specifi-
cally, HDC-based Q-learning algorithms represent the state and Q-
function using hypervectors, and computing the Q-value for a state-
action pair becomes a lightweight similarity check between hyper-
vectors. Compared to DNN, HDC-based RL algorithms achieve
significantly faster learning, higher rewards, and better efficiency
when implemented with a limited computing budget [27].

However, as learning and interaction are highly intertwined,
it is vital for RL algorithms to properly handle the exploration-
exploitation dilemma [3]. During the interaction, the RL agent
can either follow current knowledge to maximize the immediate
reward or explore unknown states and actions that are temporarily
sub-optimal but possibly informative to reach a better solution.
Prior HDC-based Q-learning applies a common technique called
𝜖-greedy to encourage exploration, which occasionally forces the
agent to take random actions [27]. However, such a random and
naive exploration is undirected and will inevitably compromise the
learning efficiency.

In this paper, we redesign the HDC-based Q-learning algorithm
for more efficient and adaptive exploration, which is capable of

111

https://doi.org/10.1145/3649476.3658760
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3649476.3658760
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649476.3658760&domain=pdf&date_stamp=2024-06-12

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

reaching a better decision-making policy with fewer interactions
given the same environment. The main contributions of the paper
are listed as follows:

• We highlight the challenge faced by agents with prior hyperdi-
mensional RL algorithms. They lack the stochasticity for effec-
tive exploration when dealing with an environment that either
gives highly sparse feedback or hides the optimal state with long
trajectories. Even with dithering techniques, we find that prior
HDC-based Q-learning can easily get stuck in suboptimal policies
if not completely lost in the sparse reward space.

• The proposed algorithm leverages the uncertainty from themodel
distribution to guide agent exploration. Instead of going through
the bulky computation of the model posterior, our algorithm is
composed of several HDC sub-models, i.e., forming an ensem-
ble. This amounts to a stochastic model that encourages deep
exploration in RL.

• We specially designed the algorithm to ensure sub-model diver-
sity during training. Compared to prior HDC algorithms with
zeroed initial models, we propose to use random and standalone
prior hypervectors coupled with random model initialization to
help diversify sub-models. This is effectively having HDC sub-
models with different prior knowledge about the environment.
Therefore, HDC sub-models learn different aspects of the space
and naturally show uncertainty when facing unseen samples.

• Our algorithms are optimized towards low-power hardware plat-
forms while achieving significantly better learning quality and
efficiency, thanks to the proposed exploration mechanism. Due
to its lightweight HDC backbone, our algorithm also outperforms
the DNN-based counterparts with various exploration techniques,
showing notable improvements in the runtime costs (up to 6.9×
faster) and learned policy (over 800 higher rewards for CartPole).

2 HYPERDIMENSIONAL Q-LEARNING
2.1 Overview of Reinforcement Learning
The RL algorithm essentially tells the agent which actions to take
given the current state of the environment and its forecast of future
rewards. Therefore, we can view the interaction in RL as a loop-like
structure: (1) Observing the state ®𝑠𝑡 at time step 𝑡 , the agent takes an
action 𝑎𝑡 guided by the RL policy. (2) The environment updates its
state to ®𝑠𝑡+1 after the agent acts. (3) The agent receives a feedback
reward 𝑟𝑡 from the environment and possibly updates its policy. (4)
Loop until the end of the current trajectory. We summarize each
step of the interaction by an experience tuple (®𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , ®𝑠𝑡+1), which
is then used for training RL agents.

In this paper, our focus is on value-based Q-learning, which
learns a Q-function 𝑄 (®𝑠𝑡 , 𝑎𝑡) to evaluate how profitable is to take
action 𝑎𝑡 in the state of ®𝑠𝑡 . In practice, the value of this function
predicts the expected accumulated future rewards after time step
𝑡 , so that a greedy policy can be applied to select an action with
the largest Q-value. Note that the RL policy can also be directly
parameterized and learned, however, it is well known that value-
based methods are intrinsically more sample-efficient than policy-
based RL methods. This is mainly because the Q-function can be
trained using off-policy samples, that is, any experience tuples from
past trajectories.

B1 1 B1 D-1 B1 D

B2 1 B2 D-1 B2 D

Bn 1 Bn D-1 Bn Dsn

s2

s1 B1 1 B1 D-1 B1 D

B2 1 B2 D-1 B2 D

Bn 1 Bn D-1 Bn D

Encoded State
Hypervector

State Base Hypervectors

Continuous
Binding

Associated
Hypervectors

Binding

 S1 SD-1 SD

s1 s1 s1

s2 s2 s2

sn sn sn

Figure 1: Overview of HDC encoder with continuous binding.

s1 Encoded State
Hypervector

State

HDC
Encoder

S1

Model
Hypervector

M1 Error

Lightweight
Model Update

sn-1

sn

SD-1 SD

at

Action a
t

MD-1 MD

rt

Reward

True Value

Predicted
Value

Figure 2: Model hypervector training in HDC-based RL.

2.2 Hypervector Encoding
In HDC, the encoder projects original inputs to a high-dimensional
space, or hyperspace. This allows information to be stored holis-
tically and distributed evenly in each element of the hypervector,
giving HDC robustness against hardware noise. As shown in Fig-
ure 1, we assume that the input to the encoder is an agent state
vector ®𝑠𝑡 ∈ R𝑛 at a specific time step 𝑡 . The HDC encoder is com-
posed of 𝑛 base hypervectors { ®𝐵1, ®𝐵2, . . . , ®𝐵𝑛}, and the encoding
is carried out independently for each element of ®𝑠𝑡 . These base
hypervectors are generated by randomly sampling from a distri-
bution. It is not hard to find that they are near-orthogonal to each
other: ®𝐵1 · ®𝐵2 ≈ 0. In prior HDC works, a wide range of random
distributions have been selected for encoding [4, 4, 17]. For HDC-
based Q-learning, the base hypervectors are comprised of random
phasors following prior work [27]: ®𝐵 ∈ [𝑒𝑖𝜃]𝐷 , where 𝜃 ∈ N (0, 1)
and the hypervector dimensionality 𝐷 ≫ 𝑛.

Figure 1 is an overview of the encoding process. To encode the
state vector ®𝑠𝑡 , we apply Continuous Binding to represent con-
tinuous element values of ®𝑠𝑡 : {𝑠1, 𝑠2, . . . , 𝑠𝑛} in the hyperspace, i.e.,
element-wise exponential of base hypervectors with the exponent
being the value to associate. More specifically, we compute the en-
coded state hypervector: ®𝑆𝑡 = ®𝐵𝑠1

1 ⊙ ®𝐵𝑠2
2 ⊙· · ·⊙ ®𝐵𝑠𝑛𝑛 . Here the encoder

uses a hypervector operation called Binding (⊙), i.e., element-wise
multiplication, to form a single hypervector that represents the
whole state vector.

2.3 Reinforcement Learning with HDC
In both DQN and HDC-based Q-learning, we will maintain an
experience replay buffer to save experience tuples generated during
the interaction. The major difference between these two algorithms
is that the Q-function is abstracted using hypervectors instead of
DNN, leading to changes in the agent decision-making process
and model training. For example, the DQN training process and
parameter update are based on back-propagation, whereas QHD
utilizes lightweight hypervector memorization.

112

Efficient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

In HDC-based Q-learning, the model is comprised of several
hypervectors 𝑄 = { ®𝑀1, ®𝑀2, . . . , ®𝑀𝑚}, each corresponds to one of
the𝑚 possible actions and has the same dimensionality 𝐷 as the
encoded state. For example, to select an action with a greedy policy,
we predict the Q-value through the dot-product similarity between
the encoded state hypervector and the model hypervector corre-
sponding to the selected action:

𝑎𝑡 = argmax
𝑎∈A

𝑄 (®𝑆𝑡 , 𝑎) = argmax
𝑎∈A

real(®𝑆𝑡 · ®𝑀†
𝑎/𝐷) (1)

where A is the action space, 𝐷 is the normalization factor, 𝑄 (·)
represent the Q-function, and ®𝑀†

𝑎 is the conjugate vector. In HDC,
computing the dot product of two hypervectors is known as the
Similarity Check. HDC-based Q-learning leverages the similarity
values between state and model hypervectors to predict Q-values.
Note that since two concerning vectors are complex-valued, we
take the real part of the result.

In Figure 2, we provide the outline of HDC-based Q-learning. The
training begins by randomly sampling an experience tuple from the
experience replay buffer, e.g., (®𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , ®𝑠𝑡+1). The algorithm first
encodes the state of the current time step and the next one to state
hypervectors ®𝑆𝑡 and ®𝑆𝑡+1, respectively. Then we can predict the
Q-value for the state-action pair {®𝑠𝑡 , 𝑎𝑡 }:

𝑞𝑡 = 𝑄 (®𝑆𝑡 , 𝑎𝑡) = real(®𝑆𝑡 · ®𝑀†
𝑎𝑡 /𝐷) (2)

The target Q-value 𝑞𝑡 is derived from the Bellman optimality equa-
tion as the following:

𝑞𝑡 =

{
𝑟𝑡 𝑡 is the last step

𝑟𝑡 + 𝛾 max
𝑎

𝑄 (®𝑆𝑡+1, 𝑎) 𝑡 is not the last step (3)

It is computed as the sum of immediate reward 𝑟𝑡 and the greedy pre-
diction of the future accumulated rewards. As proposed in Double
Q-learning [40], the Q-value for the next time step is provided by a
delayed model𝑄 , which will be updated less frequently by copying
the model hypervectors from the model 𝑄 every few training steps.
This helps stabilize the training and reduce the overestimation of
Q-values when taking the maximum.𝛾 is the reward discount factor
that decides how short-sighted is the agent. The model update is
based on the off-policy TD error, i.e., 𝑞𝑡 −𝑞𝑡 . The model hypervector
corresponding to the chosen action 𝑎𝑡 will be updated:

®𝑀𝑎𝑡+1 = ®𝑀𝑎𝑡 + 𝜂 (𝑞𝑡 − 𝑞𝑡) ®𝑆𝑡 (4)

where 𝜂 is the learning rate. Depending on the sign of the TD error,
a weighted hypervector ®𝑆𝑡 is added to or subtracted from the model
hypervector, so a higher error results in a more aggressive update.

As shown in Equation 4, the model hypervectors ®𝑀𝑎 are learned
to be a weighted combination of encoded state hypervectors, which
is usually referred to as hypervector Bundling in HDC. This allows
HDC to distinguish itself from DNNs used in DQN. Models in HDC-
based algorithms serve as memorization components that explicitly
record past experienced states ®𝑆 and their rewards 𝑞. Therefore,
similarities in Equation 2 naturally gives Q-value predictions.

After training on a batch of prior experience samples, the up-
dated agent continues exploring the environment and collects new
samples for the experience replay buffer.

3 BALANCE BETWEEN EXPLORATION AND
EXPLOITATION IN HDC-BASED RL

If we directly apply the HDC-based Q-learning introduced in the
previous section, it will not return satisfying results in most cases.
The main problem, also the focus of this work, lies in the Equation 1.
This equation stands for a purely greedy policy that always exploits
the current knowledge of the agent to choose the best possible
action. However, in the early phases of RL, the agent has very
limited knowledge about the environment, which cannot effectively
support a high-quality policy. As we mentioned in Section 1, 𝜖-
greedy mitigates this issue by letting the agent randomly explore
the space with a decaying probability. This is based on a simple
notion that the need for exploration is greater in the beginning.

However, in our algorithm, we argue that the HDC-based agent
should choose to explore only when the agent is uncertain about
the current situation; this effectively de-correlates the exploration
from the number of training iterations, making it more flexible
on tasks with different levels of complexity. In order to find out
the confidence of the agent, we apply ensemble learning based on
HDC-based Q-learning.

3.1 Stochastic Policy via HDC Sub-models
The greedy policy in Q-learning is deterministic, yet it is desired
to obtain a stochastic policy for exploration. A possible solution
is to have a posterior distribution of the Q-function. By randomly
sampling a Q-value from the distribution, the policy becomes sto-
chastic. As the posterior is closely connected to the confidence of
the agent, the agent is prone to exploration when it faces uncertain
states due to a wider Q-value distribution, and it automatically pri-
oritizes exploitation when the confidence is high. However, directly
evaluating the posterior in practice is highly inefficient.

With several HDC sub-models, our algorithm approximates the
posterior distribution by randomly choosing one sub-model to guide
the agent. Assume we have 𝑘 different sub-models {𝑄1, 𝑄2, . . . , 𝑄𝑘 }.
For efficiency purposes, we only use one of them to actually guide
the agent interaction, different from typical ensemble learning. Pe-
riodically, we perform a random selection from 𝑘 HDC sub-models
such that the agent follows a stochastic policy. When the agent is
unfamiliar with the surrounding environment, this uncertainty is
reflected through disagreements between HDC sub-models. There-
fore, sampling from sub-models effectively encourages agent explo-
ration for less frequently visited states, as each sub-model will be
likely to choose a different action.

The frequency of sub-model re-selection can be tuned depending
on the depth of exploration needed. When the agent re-selects a
sub-model for every step of interaction, our algorithm is an efficient
approximation of Thompson sampling without explicit posterior.
Thompson sampling has been shown to greatly boost agent explo-
ration in the multi-armed bandit problem [1]. It is suitable for tasks
that need shallow or local exploration. In contrast, when a sub-
model is re-sampled every episode, it is capable of deep exploration.
In this setting, the agent proactively looks for long-shot rewards
and informative states even if it means taking many sub-optimal
actions. We will show more details in Section 4.2.

Figure 3 shows the overall structure of our proposed design. All
HDC sub-models share the same hyperdimensional encoder, leading

113

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

s1
Encoded State
Hypervector

State

HDC
Encoder

S1

Model & Prior Hypervectors
sn-1

sn

S2

a

Q-value

HDC RL Sub-models

Q1

Qk

𝑴

𝑴

𝑷

𝑷

Model
Random
Selection

M1 1 M1 2 M1 D

M2 1 M2 2 M2 D

Mm 1 Mm 2 Mm D

Randomly Selected Sub-model Q for Inference

P1 1 P1 2 P1 D

P2 1 P2 2 P2 D

Pm 1 Pm 2 Pm D

Trainable Model
Hypervectors

Fixed Prior
Hypervectors

Model Initialization Randomly SampledSub-Model
Diversification

Choose One
from Possible

Actions

Ma 1 Ma 2

SD

Ma D

P1 1 P1 2 P1 D

𝑴
 𝑷

Greedy Policy:
 = 𝐚𝐫𝐠𝐦𝐚𝐱 ∈𝓐𝑸

 ,

Take Action

Reward rt

Next State
Shared Experience

Replay Buffer
 Model Update

Figure 3: HDC-based Q-learning Exploration with Sub-model Ensemble.

to an efficient implementation. Unifying the encoding process will
not compromise the stochastic policy, since the HDC encoder does
not contain trainable parameters. During training, HDC sub-models
will sample past experience tuples from a shared experience replay
buffer. Thus, tuples collected by individual sub-models are shared
with each other to improve the utilization of training samples. This
ensures any informative or highly rewarding state will be used to
train all sub-models.

3.2 Diversification in HDC Ensemble Learning
In Figure 3, we have extra hypervectors ®𝑃 in each sub-model 𝑄 ,
besides the regular model hypervectors ®𝑀 . As a crucial part of
our design, they help keep sub-models different from each other.
To encourage exploration, these sub-models should obtain a di-
verse understanding of the environment. Highly similar models
will defeat the purpose of an ensemble and lead to deterministic
policies.

However, training sub-models via hypervector memorization
(Equation 4) leads to the high similarity between those models,
given that the training samples are shared among them. In prior
works, HDC-basedmodels generally showmuch faster convergence
than other ML models even though they usually require no model
initialization. For sub-model diversification, however, a fast model
convergence and zero initialization are not ideal.

Motivated by the Bayesian inference, we include the prior dis-
tribution to the HDC learning. Similar to how we approximate the
posterior via multiple HDC sub-models, the prior is represented by
a series of randomly sampled hypervectors loaded before any train-
ing. Now in each sub-model𝑄 , there are additional𝑚 hypervectors
{ ®𝑃1, ®𝑃2, . . . , ®𝑃𝑚}. These hypervectors are not updated during train-
ing and are isolated from the model hypervectors during Q-value
computation.

We sample the prior hypervectors with dimensionality 𝐷 from
a zero-mean Gaussian distribution: ®𝑃1, ®𝑃2, . . . , ®𝑃𝑚 ∈ [N (0, 𝜎2)]𝐷
, where 𝜎 is the standard deviation and a hyperparameter in our
algorithm. We will then modify the inference process (Equation 1)
and 𝑄 (·) accordingly:

𝑎𝑡 = argmax
𝑎∈A

𝑄 (®𝑆𝑡 , 𝑎) = argmax
𝑎∈A

real
(
®𝑆𝑡 · (®𝑀†

𝑎 + ®𝑃†𝑎)
)

𝐷
(5)

In this equation, we first bundle the model hypervector and the
prior hypervector of the same action, and then the dot product
similarity is calculated between the encoded state and the bundled

Table 1: Runtime speedup on embedded CPU with different
proposed optimization techniques.

Proposed
Optimization

Pre-
Encoding Batching Mask Stacking Full

Optimization

Speedup Over
Non-optimized 1.31× 1.44× 1.82× 4.56× 5.95×

hypervector. Q-value computation in Equation 2 and 3 are also
changed accordingly. As for training, we still use Equation 4 to
update only the model hypervectors and leave the prior untouched.

Adding prior distribution will not introduce bias in Q-value pre-
diction because sufficient training will eventually cancel out the
fixed prior hypervector. More importantly, when the agent reaches
a novel state, the lack of training means that prior hypervectors
will play a significant role in the Q-value prediction. Suppose in the
extreme case that two sub-models 𝑄1 and 𝑄2 are never trained and
will be tested on a state-action pair { ®𝑆, 𝑎}: the model hypervectors
can be ignored if they are initialized with zero, and the prior hy-
pervectors ®𝑃1

𝑎 and ®𝑃2
𝑎 are randomly generated. The first sub-model

will predict 𝑞1 = real(®𝑆 · ®𝑃1†
𝑎 /𝐷), and for the second one will give

𝑞2 = real(®𝑆 · ®𝑃2†
𝑎 /𝐷). It is not hard to observe that they have diverse

predictions on Q-values due to different prior knowledge, which
naturally leads to exploration in unseen states.

To further encourage sub-model diversity, we also apply two
similar techniques as in the prior work [32]: random initialization
for model hypervectors and bootstrapped sampling for HDC sub-
model training. For the first technique, we randomly sample model
hypervectors usingN(0, 1), such that the differences in sub-models
𝑄 are from both ®𝑀 and ®𝑃 . As for the second trick, we give a binary
mask of length 𝑘 for each experience tuple in the experience buffer:
®𝑚 ∈ {0, 1}𝑘 . For example,𝑚3 = 1 means that this tuple will be used
to train the third sub-model. As the mask is not one-hot, a particular
tuple can be used for multiple sub-models. The mask elements
will be sampled independently from a Bernoulli distribution with
probability 𝑝 . A probability of less than 1 makes sub-models train
on slightly different samples.

3.3 Edge-Friendly HDC-based RL
Various techniques have been applied to our model for efficient
learning on embedded systems. By leveraging unique properties
of HDC, we can initialize a single tensor to efficiently represent a

114

Efficient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

group of model hypervectors. This allows us to train the models us-
ing the same number of operations as training a single QHD model,
significantly decreasing the computational overhead of training
multiple models. We refer to this technique as "Stacking" in Table 1
and report a 4.56x speedup.

Prior work [32] experiments with using a mask to implement an
online bootstrap by masking each episode of data. It was reported
to show little to no benefits to performance yet required more
iterations to converge. However, we adjust the bootstrap to mask
which models should be trained per time step 𝑡 instead of per
episode. This allows models to be trained during any given episode,
reducing the possibility of the selected exploration model not being
trained for an entire episode, which prohibited the benefit of deep
exploration. We note that the result of our masking method not
only reduces the runtime by 1.82×, but also increases the amount
of rewards obtained in Figure 8 (a).

Other optimizations we introduce are pre-encoding and batch-
ing. Prior HDC-based RL work [16, 27, 29] encodes the state into
high-dimensional vectors for both inference and training. Since
the state encoding matrix remains fixed, this allows us to re-use
the same state hypervectors for inference and training and to dis-
regard the need for encoding the state twice. Training samples
can also be efficiently batched to minimize the number of complex
high-dimensional encoding to one per training step. This has no
effect on the performance of the algorithm as we only batch the
encoding processes of the state vectors and not the training directly.
These approaches can be easily applied to existing HDC-based RL
methods for accelerated learning on embedded systems. We notice
a 1.33× and 1.44× speedup respectively.

Additionally, we combine all optimization methods and make
slight modifications to the QHD framework to make it more mem-
ory efficient and compatible with learning on the edge and combine
all optimizations, resulting in 5.95× speedup over a naive imple-
mentation of training on embedded CPUs.

4 EXPERIMENTAL RESULT
4.1 Experiment Settings
Our implementation is based on the low-power laptop CPU Intel
Core-i5-8259U and an embedded ARM CPU on the Raspberry Pi
platform (with 6w TDP) using Python and the Pytorch framework.
The RL environments used are based on OpenAI Gym [6]. We in-
crease the task difficulty by making the rewards sparser (assign
reward only after reaching the goal) and each episode shorter (half
the number of steps in LunarLander and Acrobot). We compare the
proposed design against several state-of-the-art baselines including
QHD [27], Double DQN (DDQN) [40], Double DQN with Thomp-
son Sampling (TDQN) [1], and Bootstrapped DQN (BDQN) [32].
By default, we use hypervectors with 𝐷 = 6000 for QHD as de-
scribed in the original paper. However, for our designwith ensemble
sub-models, we set 𝐷 = 2000, as we find that it balances between
learning quality and runtime cost. The backbone of all DQN-based
methods is a neural network with two hidden layers. The first layer
has 128 neurons, and the second one has 256; this gives a similar
computation to a single QHD model at 𝐷 = 6000 during inference.
We record multiple trials when evaluating our design and other
baselines, and we provide the moving average values of 20 episodes

S
c
o

re
s

0
50

100
150
200
250
300

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

DQN DDQN BDQN QHD BQHD

Chain

Length

Failed Failed Failed

Significant
Improvement

Figure 4: Accumulated scores/rewards in Chain environment.

U
n

it
 R

u
n

ti
m

e
 (

s
)

Chain

Length

0
0.5

1
1.5

2
2.5

3

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

DQN DDQN BDQN QHD BQHD

Laptop CPU

Embedded CPU On average:
1.6x speedup on Embedded CPU
3.8x speedup on Laptop CPU

Figure 5: Unit runtime in Chain environment.

for reward and runtime. For several aforementioned hyperparame-
ters, we set the default probability 𝑝 for the bootstrapping mask to
1, and 𝜎 = 5 for sampling prior hypervectors. Our ablation study in
Section 4.4 explores the effect of these hyperparameters. In the fol-
lowing sections, for HDC-based algorithms, TQHD stands for QHD
with Thompson sampling (i.e., the HDC sub-model is re-selected
for each interaction), and BQHD is for the setting where the same
sub-model is used until another trajectory starts.

4.2 Deep Exploration with HDC-based
Q-learning

Figure 4 and Figure 5 illustrate the rewards and unit runtimes of
various RL algorithms in a Chain environment, which is designed
to highlight the importance of thorough, deep exploration. These
experiments involve simulated environments with chains of length
𝑁 ≥ 10 and each episode lasting 𝑁 + 9 discrete steps. Additionally,
this environment has also been modified such that the reward is
0.001 when the agent is in the left-most state but reward is 1 when
the agent is in the right-most state. The simulation is finished if the
agent obtains the optimal +10 rewards 50 times or runs over 2000
episodes. There is a fundamental trade-off between employing a
well-established, moderately successful strategy and experiment-
ing an unfamiliar yet potentially more lucrative approach, favor-
ing algorithms that drive deep exploration. As shown in Figure 4,
bootstrapping drives efficient exploration and is evident through
the differences in solved chain lengths and cumulative rewards
compared to non-bootstrapped architectures. BQHD significantly
improves upon QHD in deep exploration as QHD is not able to learn
the optimal policy at any given chain length. Moreover, Figure 5
shows that BQHD performs similar exploration as BDQN while
significantly reducing the runtime per episode.

4.3 Learning Efficiency and Quality
Comparison of Various RL Algorithms

Figure 6 shows the learning curves in the Cartpole task of different
RL algorithms with or without adaptive exploration. Consistent
with the prior work [27], we observe that HDC-based algorithms
outperform the DQN-based ones in terms of achieved rewards

115

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani
R

ew
ar

ds

R
ew

ar
ds

(a) (b)
Episode Runtime (s)

TDQN BDQN

0

300

600

900

1200

0 80 160 240 320 400

QHD TQHDDDQNDQN BQHD

0
300
600
900

1200

0 250 500 750 1000

Figure 6: Cartpole learning curves comparison in terms of
(a) episodes and (b) runtime. Note that the runtime figure is
clipped at 1000 seconds.

R
ew

ar
ds

R
un

tim
e

(s
)

0
300
600
900

1200

0

5000

10000

15000

(a) (b)

6.9x

3.7x

~330
Embedded
CPU
Laptop
CPU

Figure 7: In Cartpole, compare RL algorithms at 400 learning
episodes in terms of: (a) achieved average rewards and (b)
required total runtime.

also runtime efficiency. More importantly, the proposed method
BQHD is able to further enhance that benefit by a notable margin,
achieving over 1000 rewards at 400 episodes. The result indicates
that adaptive exploration guided by the model uncertainty helps
the agent discover a much more optimal policy. Figure 7(a) shows
that our proposed BQHD is able to achieve 330 rewards higher
than the baseline QHD. Thompson sampling is not performing as
well mainly due to its inability of deep exploration. In Figure 7(b),
we compare the required total runtime for 400 episodes in both
laptop and embedded CPU platforms. The results show that TDQN
and BDQN, due to having multiple DNNs, require a much longer
learning runtime (e.g., TDQN needs nearly 3800 seconds on the
laptop CPU and 13800 seconds on the embedded CPU); they are less
desirable for deployments in edge or resource-limited devices. On
the other hand, our BQHD is about 6.9× faster than TDQN and 3.7×
faster than BDQN. In Table 2, we further evaluate our algorithm on
the LunarLander and Acrobot task, where the BQHD achieves much
higher rewards than BDQN while providing runtime speedups, e.g.,
5.5× (2.7×) on embedded CPU for Acrobot (LunarLander).

4.4 Ablation Study
Figure 8(a) highlights the difference between different mask proba-
bilities. The probability determines which models are trained on
the specific sample, which effectively allows the shared buffer to
act as separate smaller buffers for each sub-model. Prior work [32]
suggests that training with multiple mini buffers increases the run
time but allows for more diversity within the models. According
to our results, using a 𝑝 between 0.5 and 0.75 is a fair compromise
between average rewards and run time.

As stated in Section 4.1, the dimensionality of each sub-model
is correlated with the quality of learning. Figure 8(b) showcases
different dimensionalities, 𝐷 , for each sub-model and compares
the average reward for 200 episodes. We notice that increasing the

Table 2: Learning quality and efficiency comparison

Task Alg. Reward Laptop
Runtime (s)

RPi
Runtime (s)

CartPole BDQN 186 1896 7489
BQHD 1005 766 2006

Acrobot BDQN 17 6066 38507
BQHD 70 906 7045

LunarLander BDQN 27 13977 71480
BQHD 65 4097 27180

R
ew

ar
ds

Runtime (s)

0
300
600
900

1200

0 200 400 600 800

p=0.25
p=0.5
p=0.75
p=1

(a) Tuning Mask Probability (b) Tuning Dimensionality

0
300
600
900

1200

0 100 200 300 400 500

D=1k D=2k
D=3k D=4k
D=5k D=6k

Runtime (s)

R
ew

ar
ds

Figure 8: Explore the changes in the Cartpole learning curve
when tuning (a) Bernoulli probability 𝑝 and (b) hypervector
dimensionality 𝐷 . We only record 200 episodes for (b).

R
ew

ar
ds

Episode

0

500

1000

1500

0 100 200 300 400

Prior: 0 Prior: 3 Prior: 5
Prior: 10 Prior: 20 Prior: 30

Figure 9: Ablation study on the scale of prior hypervectors.
dimensionality increases the learning runtime for the benefit of
higher average rewards. 𝐷 = 2000 is chosen as it has comparable
convergence speed to 𝐷 = 1000, yet still achieves higher rewards
than vanilla QHD at 200 episodes.

The scale, 𝜎 , for prior hypervectors heavily influences the ex-
ploration of the agent. The goal of the randomized prior tuning is
to find an optimal scale such that it helps the sub-models predict
different actions at any given new state, but not too large such that
the agent fails to learn the optimal action. Figure 9 suggests that
using 𝜎 = 5 gives just enough motivation for the agent to explore
efficiently and optimally in terms of runtime and average rewards.

5 RELATEDWORK
Reinforcement Learning: By integrating deep learning, modern
RL algorithms play an increasingly important role in fields like
wireless communication [22], resource sharing in smart cities [2,
26], computer games [24], and intelligent transportation optimiza-
tion [19]. Deep RL algorithms leverage DNN to abstract better
policy for agents. However, they are computationally intensive due
to frequent agent learning, rendering poor applicability at the edge.
Exploration in RL: In RL, there is a dilemma between exploration
and exploitation [3]. In many applications, RL agent exploration is
empirically maintained through the 𝜖 decay rate in 𝜖-greedy [23, 24].
Alternatively, the Boltzmann exploration assigns probabilities to

116

Efficient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

each action proportionally to their scores, avoiding blind random
actions [12, 37]. More advanced exploration methods are usually
designed in conjunction with RL models. Examples include ran-
dom value functions [33], bootstrapped DQN [32], Thompson sam-
pling [1, 5], and Bayesian inference [10]. They share a similar moti-
vation to our algorithm, i.e., following the "optimism in the face of
uncertainty" principle [21]. However, the overhead of these explo-
ration techniques further inhibits the deployments in practice.
Learning with Hyperdimensional Computing: As an alterna-
tive lightweight machine learning method, HDC has been imple-
mented to solve various learning and cognitive reasoning tasks,
such as graph reasoning [18, 35, 44], biosignal processing [25, 31,
34, 36, 38], human activity classification [20, 30, 46], genomic se-
quencing [7, 45], regression [9, 13, 28], outlier detection [41, 42],
and text recognition [39]. These works show that HDC can out-
perform machine learning solutions, e.g., support vector machines
and DNNs. As for RL tasks, HDC has been utilized to achieve faster
convergence and lower the computational cost for both value-based
and policy-based RL algorithms [8, 27, 29]. The proposed algorithm
in work [27] requires a significantly shorter runtime in learning
and obtains a better policy than DQN. As a downstream application,
work in [16] combines HDC-based RL and environment modeling
for resource optimization in an end-edge-cloud system. However,
prior works do not systematically handle RL exploration; instead,
they apply naive random exploration guided by 𝜖-greedy [27] or
annealing variance [29], which gives rise to suboptimal sample
efficiency. In comparison, via uncertainty estimation, our proposed
method adaptively encourages exploration when facing poorly un-
derstood samples.

6 CONCLUSION
Wepropose anHDC-based lightweight RL algorithm that adaptively
encourages agent exploration. Our algorithm discovers possibly
informative states through uncertainty estimation of HDC models.
It enables the self-learning agent to interact with and learn in
challenging environments more efficiently. Our evaluation shows a
significant improvement in the sample and runtime efficiency when
compared with prior HDC-based and DNN-based RL algorithms.

ACKNOWLEDGMENTS
This work was supported in part by DARPA Young Faculty Award,
National Science Foundation #2127780, #2319198, #2321840, #2312517,
and #2235472, Semiconductor Research Corporation (SRC), Of-
fice of Naval Research through the Young Investigator Program
Award, and grants #N00014-21-1-2225 and #N00014-22-1-2067, the
Air Force Office of Scientific Research, grants #FA9550-22-1-0253,
and generous gifts from Cisco.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the

multi-armed bandit problem. In Conference on learning theory. JMLR Workshop
and Conference Proceedings, 39–1.

[2] Aseel AlOrbani and Michael Bauer. 2021. Load balancing and resource allocation
in smart cities using reinforcement learning. In 2021 IEEE International Smart
Cities Conference (ISC2). IEEE, 1–7.

[3] Kai Arulkumaran, Marc Peter Deisenroth, et al. 2017. Deep reinforcement learn-
ing: A brief survey. IEEE Signal Processing Magazine 34, 6 (2017), 26–38.

[4] Sercan Aygun, Mehran Shoushtari Moghadam, et al. 2023. Learning from Hy-
pervectors: A Survey on Hypervector Encoding. arXiv preprint arXiv:2308.00685
(2023).

[5] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. 2018.
Efficient exploration through bayesian deep q-networks. In 2018 Information
Theory and Applications Workshop (ITA). IEEE, 1–9.

[6] Greg Brockman et al. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[7] Hanning Chen and Mohsen Imani. 2022. Density-aware parallel hyperdimen-

sional genome sequence matching. In 2022 IEEE 30th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 1–4.

[8] Hanning Chen, Mariam Issa, et al. 2022. Darl: Distributed reconfigurable accel-
erator for hyperdimensional reinforcement learning. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. 1–9.

[9] Hanning Chen, M Hassan Najafi, et al. 2022. Full stack parallel online hyper-
dimensional regression on fpga. In 2022 IEEE 40th International Conference on
Computer Design (ICCD). IEEE, 517–524.

[10] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[11] Florin-Cristian Ghesu and Bogdan others Georgescu. 2017. Multi-scale deep
reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE
transactions on pattern analysis and machine intelligence 41, 1 (2017), 176–189.

[12] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Rein-
forcement learning with deep energy-based policies. In International conference
on machine learning. PMLR, 1352–1361.

[13] Alejandro Hernández-Cano, Yang Ni, Zhuowen Zou, Ali Zakeri, and Mohsen
Imani. 2024. Hyperdimensional computing with holographic and adaptive en-
coder. Frontiers in Artificial Intelligence 7 (2024). https://doi.org/10.3389/frai.
2024.1371988

[14] Wenjun Huang, Arghavan Rezvani, Hanning Chen, Yang Ni, Sanggeon Yun,
Sungheon Jeong, and Mohsen Imani. 2024. A Plug-in Tiny AI Module for Intelli-
gent and Selective Sensor Data Transmission. arXiv preprint arXiv:2402.02043
(2024).

[15] Mohsen Imani, Zhuowen Zou, Samuel Bosch, Sanjay Anantha Rao, Sahand Sala-
mat, Venkatesh Kumar, Yeseong Kim, and Tajana Rosing. 2021. Revisiting hy-
perdimensional learning for fpga and low-power architectures. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 221–234.

[16] Mariam Issa, Sina Shahhosseini, et al. 2022. Hyperdimensional hybrid learning on
end-edge-cloud networks. In 2022 IEEE 40th International Conference on Computer
Design (ICCD). IEEE, 652–655.

[17] Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive computation 1, 2 (2009), 139–159.

[18] Jaeyoung Kang, Minxuan Zhou, et al. 2022. RelHD: A Graph-based Learning
on FeFET with Hyperdimensional Computing. In 2022 IEEE 40th International
Conference on Computer Design (ICCD). IEEE, 553–560.

[19] Jintao Ke et al. 2019. Optimizing online matching for ride-sourcing services with
multi-agent deep reinforcement learning. arXiv preprint arXiv:1902.06228 (2019).

[20] Yeseong Kim, Mohsen Imani, and Tajana S Rosing. 2018. Efficient human ac-
tivity recognition using hyperdimensional computing. In Proceedings of the 8th
International Conference on the Internet of Things. 1–6.

[21] Tze Leung Lai, Herbert Robbins, et al. 1985. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics 6, 1 (1985), 4–22.

[22] Le Liang, Hao Ye, and Geoffrey Ye Li. 2019. Spectrum sharing in vehicular
networks based on multi-agent reinforcement learning. IEEE Journal on Selected
Areas in Communications 37, 10 (2019), 2282–2292.

[23] Gabriel Maicas, Gustavo Carneiro, et al. 2017. Deep reinforcement learning
for active breast lesion detection from DCE-MRI. In International conference on
medical image computing and computer-assisted intervention. Springer, 665–673.

[24] Volodymyr Mnih, Koray Kavukcuoglu, et al. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[25] Ali Moin, Andy Zhou, et al. 2021. A wearable biosensing system with in-sensor
adaptive machine learning for hand gesture recognition. Nature Electronics 4, 1
(2021), 54–63.

[26] Almuthanna Nassar and Yasin Yilmaz. 2021. Deep reinforcement learning for
adaptive network slicing in 5G for intelligent vehicular systems and smart cities.
IEEE Internet of Things Journal 9, 1 (2021), 222–235.

[27] Yang Ni, Danny Abraham, et al. 2023. Efficient Off-Policy Reinforcement Learning
via Brain-Inspired Computing. In Proceedings of the Great Lakes Symposium on
VLSI 2023. 449–453.

[28] Yang Ni, Hanning Chen, et al. 2023. Brain-Inspired Trustworthy Hyperdimen-
sional Computing with Efficient Uncertainty Quantification. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE, 01–09.

[29] Yang Ni, Mariam Issa, et al. 2022. Hdpg: hyperdimensional policy-based rein-
forcement learning for continuous control. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 1141–1146.

117

https://doi.org/10.3389/frai.2024.1371988
https://doi.org/10.3389/frai.2024.1371988

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

[30] Yang Ni, Yeseong Kim, et al. 2022. Algorithm-hardware co-design for efficient
brain-inspired hyperdimensional learning on edge. In 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 292–297.

[31] Yang Ni, Nicholas Lesica, Fan-Gang Zeng, and Mohsen Imani. 2022. Neurally-
inspired hyperdimensional classification for efficient and robust biosignal pro-
cessing. In Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design. 1–9.

[32] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. Advances in neural information process-
ing systems 29 (2016).

[33] Ian Osband, Benjamin Van Roy, and Zheng Wen. 2016. Generalization and explo-
ration via randomized value functions. In International Conference on Machine
Learning. PMLR, 2377–2386.

[34] Una Pale, Tomas Teijeiro, and David Atienza. 2022. Multi-centroid hyperdimen-
sional computing approach for epileptic seizure detection. Frontiers in Neurology
13 (2022), 816294.

[35] Prathyush Poduval, Haleh Alimohamadi, et al. 2022. Graphd: Graph-based hy-
perdimensional memorization for brain-like cognitive learning. Frontiers in
Neuroscience 16 (2022), 757125.

[36] Abbas Rahimi, Artiom Tchouprina, et al. 2020. Hyperdimensional computing for
blind and one-shot classification of EEG error-related potentials. Mobile Networks
and Applications 25 (2020), 1958–1969.

[37] Brian Sallans and Geoffrey E Hinton. 2004. Reinforcement learning with factored
states and actions. The Journal of Machine Learning Research 5 (2004), 1063–1088.

[38] Sina Shahhosseini, Yang Ni, et al. 2022. Flexible and personalized learning for
wearable health applications using hyperdimensional computing. In Proceedings

of the Great Lakes Symposium on VLSI 2022. 357–360.
[39] Kumar Shridhar and Harshil others Jain. 2020. End to end binarized neural

networks for text classification. In Proceedings of SustaiNLP: Workshop on Simple
and Efficient Natural Language Processing. 29–34.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 30.

[41] Ruixuan Wang, Xun Jiao, and X Sharon Hu. 2022. Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 43–48.

[42] Ruixuan Wang, Sabrina Hassan Moon, X Sharon Hu, Xun Jiao, and Dayane Reis.
2024. A Computing-in-Memory-based One-Class Hyperdimensional Computing
Model for Outlier Detection. IEEE Trans. Comput. (2024).

[43] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[44] Ali Zakeri, Zhuowen Zou, et al. 2024. Conjunctive block coding for hyperdi-
mensional graph representation. Intelligent Systems with Applications (2024),
200353.

[45] Zhuowen Zou, Hanning Chen, et al. 2022. Biohd: an efficient genome sequence
search platform using hyperdimensional memorization. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 656–669.

[46] Zhuowen Zou, Yeseong Kim, et al. 2021. Scalable edge-based hyperdimensional
learning system with brain-like neural adaptation. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–15.

118

	Abstract
	1 Introduction
	2 Hyperdimensional Q-learning
	2.1 Overview of Reinforcement Learning
	2.2 Hypervector Encoding
	2.3 Reinforcement Learning with HDC

	3 Balance Between Exploration and Exploitation in HDC-based RL
	3.1 Stochastic Policy via HDC Sub-models
	3.2 Diversification in HDC Ensemble Learning
	3.3 Edge-Friendly HDC-based RL

	4 Experimental Result
	4.1 Experiment Settings
	4.2 Deep Exploration with HDC-based Q-learning
	4.3 Learning Efficiency and Quality Comparison of Various RL Algorithms
	4.4 Ablation Study

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

