
Hyperdimensional Hybrid Learning on
End-Edge-Cloud Networks

Mariam Issa, Sina Shahhosseini, Yang Ni, Tianyi Hu, Danny Abraham,
Amir M. Rahmani, Nikil Dutt, and Mohsen Imani

University of California, Irvine
{mariamai, sshahhos, yni3, tianyih7, dannya1, a.rahmani, amirdutt, m.imani}@uci.edu

Abstract—In this paper, we present Hyperdimensional Hybrid
Learning (HDHL), which combines model-free and model-based
Reinforcement Learning, to effectively reduce the computational
cost and environment interaction for optimizing an intelligent
cloud service. We first show that Hyperdimensional Q-Learning
(QHD), the state-of-the-art Hyperdimensional Computing value-
based Reinforcement Learning algorithm, is computationally
faster than the Deep Q-Network (DQN) for this task. In addition,
we demonstrate how HDHL reduces the number of environment
interactions by 4.8× to learn the near optimal configuration. Our
evaluation shows that HDHL is computationally more efficient
than both Q-Learning algorithms, with the total time being
reduced by 21.0× compared to DQN and 16.5× compared to
QHD.

I. INTRODUCTION

Resource management is a multi-dimensional optimization
problem since it requires finding the appropriate device to
offload computation while minimizing latency in aberrant
network conditions [1]. Configuring this system is extremely
complex and requires machine learning algorithms’ run-time
decision-making capabilities. Reinforcement Learning (RL)
algorithms have shown great potential in solving dynamic
resource management and scheduling problems [2], [3]. RL
methods are developed to interact with the environment by
trying different actions and reinforcing those that provide
higher rewards [4].

Hybrid learning is an approach that utilizes model-based
and model-free RL algorithms to exploit their strengths and
lessen their respective disadvantages, e.g., costly real-time
exploration and model-bias. To mitigate the trial-and-error
phase of model-free learning, a model-based RL system model
is incorporated to aid the model-free agent by producing data
samples from the simulated environment. As a result, this
reduces the number of direct interactions with the system to
enable faster real-time learning. However, previously proposed
Hybrid Learning algorithms utilize deep neural networks [5],
which have the following computational challenges: (1) de-
mand unreasonable resources to train since neural networks
rely on costly back-propagation and gradient-based methods,
(2) are extremely sensitive to noise in data, network, or un-
derlying hardware, and (3) lack human-like cognitive support
for long-term memorization and transparency.

To address the above listed challenges, recent intelligent
algorithms aim to model the human brain more closely. Brain-
inspired Hyperdimensional Computing (HDC) is gaining trac-
tion for its impressive learning ability, lightweight hardware
implementation, and computational efficiency [6]–[9]. The
origin of the field stems from neuroscience research on how
the human brain processes information in high dimensions due
to the brain’s extensive circuitry [10], [11]. HDC abstractly

extends this concept as a learning paradigm by modeling and
operating on high-dimensional data representations [10], [12].

This class of algorithms is able to accomplish both classi-
fication and regression machine learning tasks [13]–[17] and
has achieved comparable results to neural networks [6]. HDC
has also been used for popular model-free RL algorithms,
including PPO and Q-learning [18], [19], all while enabling
a higher quality of learning (e.g., faster convergence, learning
speed) and computational efficiency.

We employ an HDC version of the Deep Dyna-Q model to a
hybrid learning algorithm for orchestrating an end-edge-cloud
architecture for DL inference tasks [20], [21]. As a result,
our algorithm significantly speeds up training by reducing the
number of real-time interactions with the system and enabling
computationally efficient learning.

In this paper, we propose HDHL, a novel hyperdimensional
hybrid learning model to optimize resource management ap-
plications. Our contributions in this paper are listed below:

• To the best of our knowledge, HDHL is the first hyperdi-
mensional hybrid learning algorithm to successfully and
efficiently orchestrate an end-edge-cloud system.

• Compared to DQN, HDHL is a computational. more
efficient algorithm with an improved quality of learning

We show that the novel HDHL algorithm is computationally
more efficient than DQN by 21.0× for three devices and by
9.5× for four devices. In addition, we show HDHL’s improved
learning quality and significant reduction to the number of
direct interactions with the system environment by 4.8× for
three devices and by 5.7× for four devices.

II. NETWORK ARCHITECTURE OVERVIEW

Our network consists of a cloud node that hosts the main
RL agent i.e., the intelligent orchestrator, where the system’s
offloading decision-making occurs, an edge device, and mul-
tiple end-devices. The metric that we aim to optimize is the
comprehensive time of deciding which device to offload to, the
service request, and the handling of the results. In addition,
we define the Quality of Service (QoS) Goal as the service’s
accuracy constraint that needs to be satisfied.

To learn the optimal network configuration given the net-
work conditions, we employ an RL agent to interact with
the environment to collect experience, which is then used to
formulate a policy. The State Space is the system dynamics at
a given time step, which are the available processing cores,
network stability, and memory availability. The measures
of each of these components impact the optimal offloading
decisions.

Furthermore, the Action Space is comprised of the of-
floading decisions made at each time step. The size of the
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Fig. 1: Multi-user DL inference orchestration framework.

action space depends on the number of end-devices and the
number of deep learning models stored in an end-node. Each
end-device either offloads the intelligent task to a higher
computational capacity node or executes the task locally,
which requires a selection between the l models. To simplify
the action space, we restrict the cloud and edge devices to store
one model. We define the Reward Function as the observed
average response time of the agent’s consequent offloading
decisions given the network conditions at each time step. This
is the feedback from the environment used for optimizing the
system’s orchestration. To incorporate the accuracy threshold
constraint, we penalize the agent if this constraint is violated;
otherwise, the reward remains the average response time.

The end-edge-cloud architecture is presented in Figure 1 and
shows the sequence of steps in this protocol. Each end-device
include two software components: (i) the resource monitoring
service which periodically collects the device system’s param-
eters and broadcasts these metrics to the cloud and edge nodes;
and (ii) the collection of deep learning models, which are
trained for image classification. The cloud and edge nodes also
contain these two software components. In addition, the cloud
hosts the orchestrator, which is responsible for offloading
decisions and local model selection if applicable.

III. HYPERDIMENSIONAL COMPUTING HYBRID LEARNING

To further improve the QHD algorithm, we incorporate
model-based reinforcement learning to learn a system model
and include a planning phase to leverage faster training. This
approach is sectioned into three phases (1) the exploratory
phase used for data collection, (2) the system model training
phase, and (3) the planning phase which involves training the
Q-Learning agent.

A. Hybrid Learning Algorithm
An issue that arises in applying the Q-Learning algorithm to

this problem is working with an action space that is extremely
large. This is a challenge since a large state space requires
extensive exploration to learn the best configuration of actions.
As described in the previous section, each end-device has l+2

Fig. 2: Hybrid Learning Architecture.

choices at any time point: it either selects one of the l locally
stored models or it offloads the task to either of the edge
or cloud devices. Given the number of end devices, the action
space quickly grows e.g., for a network configuration of n end-
devices and l local models, the number of actions is (l+2)n.
This is difficult for any RL algorithm to efficiently tackle since
the length of exploration consumes much of the time and cost
to train the agent.

A hybrid approach to this problem is to re-introduce the
problem to the agent with the inclusion of a planning phase
that utilizes a system model. To mitigate the expensive ex-
ploration phase, we use a system model to simulate the
environment by training it to learn the next state and response
times given a state-action pair. This is a computationally
efficient alternative to leverage since relying solely on direct
interactions with the environment for training is expensive.
However, this approach still includes the Q-Learning explo-
ration phase since it collects the initial data samples necessary
for training the system model. The system model includes two
models: the first is the Time Model, an HDC regression model
used to predict the response time of taking an action at a given
state, and the second is the State Model, which is implemented
using a collection of HDC classification models to predict the
next observation space.

In the first phase of this hybrid learning approach, the QHD
model is deployed to the environment to collect data to pop-
ulate the replay buffer, bufferdirect, for the subsequent phase.
The algorithm used includes the Epsilon-Greedy Algorithm, a
random neighbor action selection, and the calculation of Q-
Values using HDC. This first phase is used solely for data
collection; thus, no updates are made to either of the target or
policy models. The second phase utilizes bufferdirect to train
the system model in predicting the network behaviors, which
is then used in the planning phase. This third phase uses the
system model’s simulated data to further train the QHD agent.

B. System Model Design
As mentioned, we train a system model in order to learn

the network behavior and simulate the environment in order
to accumulate more data samples. The first component of
the system model, the Time Model, predicts the reward e.g.,
response time, of selecting action At at state St. Since this
is a regression model, it is quite similar to the QHD model
in terms of its implementation; however, instead of using the
regression model to output the Q-value of a state-action pair,
it outputs the predicted response time of taking action At

at a given state St. This is achieved by encoding the state
St into hyperdimensional space and associating it to each

of the model’s class hypervectors { �M0, �M1, ... �MNactions
},

which outputs the predicted reward for selecting each action
respectively. We sample tuples, {St, At, Rt, St+1}, from the
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bufferdirect to enable a supervised training of the model by
updating the model by the error in predicted response time,
R′

t, as shown below

MAt
= MAt

+ α(Rt −R′
t)× �St (1)

where α is the learning rate, MAt
is the action’s corresponding

class hypervector, and �St is the state’s encoded hypervector.
We train this model to be leveraged in the planning phase of
this approach.

The system model’s second component is the State Model,
which is trained to predict the next state St+1 of the envi-
ronment given action At at state St. This involves predicting
each of the elements in the observation space, which includes
each device’s CPU utilization, available memory, and available
bandwidth. An issue that arises in implementing this classi-
fication task is due to the large number of possible network
configurations. To calculate the number of classes for classi-
fication involves exhaustively enumerating all combinations
of each resource metric. Accounting for all these possible
network states and translating this into a classification task
would require an HDC model that contains 22n · 102 · 22 class
hypervectors for n end-devices. This implementation would be
infeasible since each class hypervector contains thousands of
elements; hence, it can be assumed that training such a model
would perform far worse than the QHD model, making this
hybrid learning approach entirely futile.

Instead, we break the classification into sub-tasks by training
multiple HDC models, where each model is trained to only
predict one of the observations in the state space. Although
there is a trade-off in having to train 4 + 2 · ndevices HDC
models, this is a far better alternative since all, except the
cloud and edge devices’ CPU utilization levels, would re-
quire binary classification tasks. The input for each of these
models are the concatenated state and action pairs, which
are encoded using the Radial Basis Function kernel. The
resulting hypervector is then used to predict its observation
feature using the cosine similarly between the encoded vector
and each of the model’s class hypervectors. Once each of
these models output their respective predicted observation, the
predictions are then concatenated to reconstruct the predicted
state at the next time step, St+1. To update the HDC model,
we implement an adaptive iterative training approach, which
updates the class hypervectors based on the cosine similarity
of the encoded state hypervector of the same class in order to
increase their similarity in hyperspace. Conversely, if the class
is predicted incorrectly, we update the incorrectly predicted
class hypervector in the opposite direction to decrease the
similarity:

Mcorrect = Mcorrect + αδ( �HStAt ,Mcorrect)× �HStAt

Mwrong = Mwrong − αδ( �HStAt
,Mwrong)× �HStAt

where α is the learning rate, δ is the cosine similarity,
�HStAt

is the encoded state-action hypervector, and Mcorrect

and Mwrong are the correctly and incorrectly predicted class
hypervectors respectively. By training each of these HDC
classification models separately, we are able to predict with
high accuracy the overall next state of the network.

C. Planning Phase
The third phase is broken down into two parts. The first

component involves populating a replay buffer, bufferrecom,

with the best recommended state-action pairs, which is then
used for its subsequent counterpart of training and updating the
QHD agent. To populate the bufferrecom, the trained system
model from the previous phase is used to predict the next state
and reward given any state-action pair. For a given state, we
utilize the Time Model to predict the action that yields the high-
est reward and use this selected action to predict the next state
of the environment via the State Model. We use this fabricated
data to populate a prioritized replay buffer, bufferplan, to be
used later in this phase. To tackle the challenge of exploring
a large space, we also select a random neighboring action
for each of the top action’s adjacent action configurations to
populate the bufferplan, which enables a strategic exploration
of the large state-action space. Furthermore, the buffer stores
exactly one state-action pair for each respective state. In the
scenario where a state exists in the bufferplan when the same
state is populated with a new action: the buffer will replace
the previously matched action with the new one, along with
its corresponding predicted value. By employing these two
models together, we collect additional data samples without
needing to directly interact with the environment, saving time
and computational overhead.

The next step in planning trains the QHD agent by sampling
from the bufferplan. By using the simulated data, only the
states that are most likely to yield the highest rewards are
strategically used to train the agent. It uses the QHD model to
select the best action for each state in the sampled buffer and
updates the QHD model with the correct and incorrect action
values. After iterating through this step a number of times, the
target model is updated at the end of the epoch. Additionally,
this step includes updating the policy QHD model with the Q-
value errors. This final phase of the hybrid learning concludes
and returns to the exploratory first phase.

IV. EVALUATION

A. Experimental Setup
For the DL orchestration framework, we first consider

the MobileNet image classification application as the bench-
mark [22]. We consider eight different MobileNet models [22]
with varying levels of accuracy and performance, with each
model having different response times and accuracy levels.
Our framework supports up to four end-device nodes, net-
worked with edge and cloud layers.

Each end-user device is connected to a single edge device,
and can request a DL inference service to the cloud layer. The
cloud layer hosts the orchestrator that contains the RL agent,
which handles the inference orchestration. Upon each service
request, the RL agent is invoked to determine: (i) where the
request should be processed and (ii) what DL model should be
executed for the corresponding request. The platform consists
of five AWS a1.medium instances with single ARM-core (as
the end-device nodes), connected to an AWS a1.large instance
with two CPUs (as edge device), and an AWS a1.xlarge
instance with four CPUs (as the cloud node). In this work, we
conduct experiments under four unique scenarios with varying
network conditions.

V. EXPERIMENTAL RESULTS

A. Performance
We demonstrate the proposed agent’s performance in finding

the optimal orchestration configuration. At design time, we
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Fig. 3: Comparison of training times between DQN [23],
QHD, and HDHL.

determine the true optimal configuration for orchestrating
a DL task under any given condition of workload, and
number of active users using a brute-force search. This is
used for comparing the orchestration decision made by our
agent to the true optimal decisions. Our proposed algorithm
yields a 100% prediction accuracy in comparison with the
true optimal decision. For each end-user node within each
experimental scenario, we present the orchestration decision
made by the proposed agent. The decision consists of the
choice of execution node and inference model. Our proposed
agent explores the Pareto-optimal space of offloading choice
and model selection to minimize the response time within
the accuracy requirement. For instance in the experimental
scenario A, maintaining Max accuracy threshold results in an
average response time of 410.35ms, by: setting the models
to d0 on device S1-S4 and offloading choices to L (local
device), E (Edge device), and C (Cloud device). The agent can
improve the response time by sacrificing the accuracy within
a predetermined tolerable level. For example, by lowering the
accuracy threshold to 85%, the average response time can be
reduced by 62%.

B. Results

Both Figure 3 and Table I shows the computational effi-
ciency between the baseline DQN and the two HDC-based RL
models. The QHD algorithm realizes an overall 1.3× speed up
to the total time. This result is enhanced when deployed to a
system with four end-devices with the total time seeing a speed
up of 1.5×. Meanwhile, the HDHL realizes an acceleration
to the total time by 21.0× for 3 devices and by 9.5× for
four devices. In addition, we compare the learning quality
between the DQN and the HDHL models and demonstrate
the latter’s surpassing performance in Figure 4. It can be
observed that HDHL converges at a significantly faster rate
than the baseline DQN algorithm in 4.8× fewer interactions
with the environment, attaining a near optimal reward, which
is 4.6×103 milliseconds slower than the optimal configuration.

VI. CONCLUSION

In this paper we present Hyperdimensional Hybrid Learn-
ing, the first HDC based hybrid learning algorithm for orches-
trating deep learning tasks in an end-edge-cloud architecture.
We demonstrate its computational efficiency and effective
learning quality.
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Fig. 4: Learning Overhead for DQN and HDHL

TABLE I: Training overhead (presented in number of steps)
for different number of users compared with the state-of-the-
art [23].

# of Users DQN QHD HDHL

Three 1.2× 104 5× 104 0.2× 104

Four 4.0× 104 4.5× 104 0.8× 104
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