
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024 1

Intelligent Sensing Framework: Near-Sensor
Machine Learning for Efficient Data

Transmission
Wenjun Huang, Arghavan Rezvani, Hanning Chen, Yang Ni,

Sanggeon Yun, Sungheon Jeong, Guangyi Zhang, Mohsen Imani

Switch Cloud/Edge

Computing

NetworkCamera

P
re

d
ic

ti
o
n
s

L
ig

h
tw

e
ig

h
t

Y
O

L
O

Threshold

Abstract— Applications in the Internet of Things (IoT) utilize
machine learning to analyze sensor-generated data. However,
a major challenge lies in the lack of targeted intelligence in
current sensing systems, leading to vast data generation and
increased computational and communication costs. To address
this challenge, we propose a novel sensing framework to equip
sensing systems with intelligent data transmission capabilities
by integrating a highly efficient machine learning model placed
near the sensor. This model provides prompt feedback for the
sensing system to transmit only valuable data while discard-
ing irrelevant information by regulating the frequency of data
transmission. The near-sensor model is quantized and opti-
mized for real-time sensor control. To enhance the framework’s
performance, the training process is customized and a “lazy”
sensor deactivation strategy utilizing temporal information is
introduced. The suggested framework is orthogonal to other
IoT frameworks and can be considered as a plug-in for selective data transmission. The framework is implemented,
encompassing both software and hardware components. The experiments demonstrate that the framework utilizing the
suggested module achieves over 85% system efficiency in terms of energy consumption and storage, with negligible
impact on performance. This framework has the potential to significantly reduce data output from sensors, benefiting a
wide range of IoT applications.

Index Terms— Energy Efficiency, Internet of Things, Near-Sensor Computing, Intelligent Sensing, Machine Learning.

I. INTRODUCTION

THE prevalence of ubiquitous sensors is currently expe-
riencing an exponential surge, both in terms of their

quantity and the vast amount of data they generate. Despite the
rapid growth, existing approaches to sensor data processing
and transmission cannot keep pace due to their algorithmic
and architectural limitations [1]. In numerous IoT applications,
data collected by sensors are analyzed using machine learning
(ML) models [2]–[5]. As the volume of data continues to grow,
many applications opt to send the data to more computation-
ally powerful nodes, such as edge or cloud computing nodes,
to execute the learning algorithms. In either scenario, a large

This work was supported in part by the DARPA Young Faculty
Award, the National Science Foundation (NSF) under Grants #2127780,
#2319198, #2321840, #2312517, and #2235472, the Semiconductor
Research Corporation (SRC), the Office of Naval Research through
the Young Investigator Program Award, and Grants #N00014-21-1-2225
and N00014-22-1-2067. Additionally, support was provided by the Air
Force Office of Scientific Research under Award #FA9550-22-1-0253,
along with generous gifts from Xilinx and Cisco.

All the authors are with the Department of Computer Science at
the University of California, Irvine, CA 92697. Mohen Imani is the
corresponding author (email: m.imani@uci.edu). Wenjun Huang and
Arghavan Rezvani contributed equally to this work.

volume of data is transmitted at a high rate to ensure that all
necessary information is captured and processed for various
tasks. The significant amount of data conveyed in both sce-
narios places high demands on energy and storage resources,
resulting in considerable resource pressure and wastage [6].
This is especially problematic for applications that require a
relatively complex and expensive ML model. Figure 1 depicts
a typical IoT system for video monitoring systems, where
dense data generated by the camera is continuously analyzed
using complex ML models. In the system, visual signals
captured by surveillance cameras are transmitted continuously
to a costly ML model, which may be hosted on a central
server, such as a cloud or edge computing node. Depending on
the intended purposes, the ML model performs various tasks,
including but not limited to classification, object detection, and
segmentation [7], [8].

Many studies attempted to alleviate the energy and storage
pressures in IoT applications from multiple perspectives, e.g.,
computing offloading, resource allocation, etc. Traditional
methods have shown substantial progress in tackling these
issues. Certain research efforts leveraged the Lyapunov op-
timization algorithm [9] to identify the optimal decision [10].

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

Costly

Computation
Object detection

Classification

Segmentation

Fig. 1. Application scenarios of an intelligent system.

Others framed resource allocation and computing offloading as
optimization challenges [11]–[15]. However, these approaches
exhibit certain limitations. Firstly, they require knowledge of
the underlying model, which proves challenging due to the
intricate and dynamic nature of IoT systems. Secondly, they
are vulnerable to stuck at local optima. Some research [16]–
[20] have introduced intelligent offloading strategies grounded
in deep learning (DL). Furthermore, some research have placed
emphasis on the optimization of hardware structures, thereby
enhancing the efficiency of edge computing [21]–[23].

Different from the work above, which uses ML/DL algo-
rithms to automate offloading and resource allocation, some
research proposes solutions to reduce data generated by the
sensor. For example, in the realm of computer vision, analyze-
then-compress (ATC) approaches present an alternative strat-
egy in which front-end devices extract and transmit features
to a central server. Depending on the specific scenario in
which it is being applied, ATC approaches utilize a variety of
traditional feature extraction algorithms, ranging from hand-
crafted methods (e.g., [24]–[26]) to information theory-based
methods [27], [28]. In recent years, more advanced deep-
learning-based methods have garnered significant attention.
Several early layers of DNN are deployed on the front-
end devices for extracting highly compact and representative
features. In the face recognition task, for example, the face
of an individual can be represented by features with several
hundred dimensions [29]–[31]. By representing data in such
features, the amount of data that needs to be transmitted can
be significantly decreased. Additionally, only a few lightweight
operations are required to be performed on the central server.

However, a notable limitation of DNN-based ATC methods
is their restricted capacity for generalization. Given the metic-
ulous design of DNN architectures, the features they extract
and transmit to the central server are often highly abstract
and tailored specifically to the intended task. However, visual
signal carrying pertinent information typically undergoes a
sequence of downstream tasks for comprehensive analysis.
Consequently, the inherent challenge arises from the deficiency
in generalization, rendering it difficult to design a backbone
network capable of extracting features suitable for all such
tasks. Moreover, in numerous scenarios, it becomes useful
to retain visual signals for subsequent analysis or future
reference. The transmission of excessively abstract features
significantly complicates the process of reconstructing the
original visual signal on the server side. Although front-end
devices possess the capability to store the original signals, their

constrained storage capacity poses a challenge.
In addition, all the efforts mentioned above, whether from

an IoT or ML perspective, still need to process all the data
generated from the sensor, neglecting the fact that in many
IoT applications (e.g., fire alarm, wildlife monitoring, crime
surveillance [32], healthcare [33]), only a small fraction of
sensor activity typically contains valuable information. Hence,
it is unnecessary to run a costly service, such as a large-scale
DNN model, that handles a continuous and complete stream
of sensor data, whether on the edge or in the cloud. This is
because the service specifically targets only that small fraction
of valuable data, yet it still requires processing substantial
amounts of irrelevant information.

Spiking Neural Networks (SNNs) and event cameras, on the
other hand, generate data only when there is a change in the
scene, reducing the amount of data needed for transmission.
However, in a static scene, an event camera would barely
generate any data, effectively rendering it blind to stationary
information. This limitation restricts its applicability, partic-
ularly for tasks involving slowly moving objects. Moreover,
the spatial resolution of event cameras is generally lower
compared to high-resolution frame-based cameras, which can
be a limiting factor for applications that require detailed spatial
information. Event cameras can also be sensitive to noise,
especially in low-light conditions, resulting in spurious events
that add complexity to the data processing. Last but not least,
the price of event cameras is generally higher than that of
traditional RGB cameras, which can limit their applicability
for widespread deployment.

Observing the limitations of the approaches previously
discussed, in this paper, we rethink and redesign the sensing
system, proposing a new framework that is orthogonal to
previous research directions. Rather than reducing the data
representation or determining where and how data should be
relocated for service execution, our framework focuses on
reducing the amount of data sent out from the sensor side by
identifying valuable information. Our framework, acting as a
“filter”, can be applied before any aforementioned approaches,
and easily be integrated into any system as a plug-in.

Our proposed framework consists of a few components.
First, we deploy a lightweight model near the sensor to detect
whether a frame contains useful information, which we refer to
as a frame of interest (FOI), and only send out those FOIs. The
model helps mitigate the huge amount of unnecessary analysis
of costly ML models over the central server. Although this
process can also be deployed before the costly ML models
at the same place, our near-sensor model offers substantial
savings in transmission costs, encompassing energy, band-
width, and more. To enable intelligent sensing, the near-sensor
model should be fast enough to process frames in real-time
and provide feedback. With the help of this feedback, our
framework produces selective and sparse data. Furthermore,
we enhance the overall performance of the framework by
introducing several effective schemes to mitigate potential
misdetections of the lightweight model, which we explore in
the following sections.

In this work, we describe the following contributions:
• We propose a new framework that improves IoT system

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 3

Fig. 2. Motivation and design of our proposed intelligent sensing module. a. General system framework of conventional systems and our system.
b. Visualization of the data transmission in our system. c. Illustration of minimum data transmission frequency (denoted by fmin) in our system. fr
denotes the camera’s refresh rate. d. Illustration of lazy sensor deactivation scheme in our system, N is the number for deactivation count.

energy and storage efficiency orthogonal to the previous
approaches. It can be readily inserted into any existing
system, serving as an intelligent data generation “filter”.
We call the sensor exploiting this framework an “intelli-
gent sensor” in the rest of the paper.

• To illustrate our framework, we design a modified DNN
model tailored to near-sensor computing.

• We introduce schemes for alleviating possible misdetec-
tions of the near-sensor model, including non-zero min-
imum transmission frequency and lazy deactivation. We
also conduct a thorough investigation into their impact
on overall system performance.

• We implement the framework encompassing both soft-
ware and hardware components. Our experiments demon-
strate that utilizing our intelligent framework leads to a
substantial reduction in energy and storage consumption
in sensing systems.

II. METHODS

A. Framework Overview

Figure 2a illustrates the framework of a conventional sys-
tem and our framework. In Figure 2a(1), the conventional
sensor captures and transmits all the frames to the costly
models, regardless of the presence of useful information in
the frames. On the contrary, the intelligent sensor equipped
with our framework, as shown in Figure 2a(2), utilizes a
lightweight model near the sensor to detect and control the FOI
transmission. The model is deployed on an edge computing
device integrated into the camera, connecting to the image
sensor. Specifically, the camera captures a continuous stream
of frames, which are then fed to the lightweight model for real-
time predictions. With the presence of FOI, the camera raises

the data transmission frequency, and the frames are transmitted
to the central server for more sophisticated operations; if the
frame is detected as background (with no interest), the camera
will turn off the data transmission. Figure 2b provides a visu-
alized example, where the transmitted frames are presented in
color while the discarded frames are shaded in gray. The sys-
tem adopting our framework, as demonstrated in Figure 2b(2),
outperforms conventional systems depicted in Figure 2b(1) by
exclusively transmitting frames containing a zebra, resulting
in a reduction of storage and energy consumption by half in
this particular instance.

This is because transmitting only the necessary FOIs to the
central server reduces the number of inferences needed by the
complex ML model on the central server, which is the primary
source of energy consumption. This reduction is achieved
while introducing only a negligible energy overhead associated
with the near-sensor model. This is in contrast to previous
approaches that would transmit all frames to the server based
on the camera’s refresh rate, resulting in significant energy
waste due to performing inference on numerous unnecessary
frames.

In this work, we concentrate on the effect of our proposed
framework on energy consumption reduction. Each element in
the framework is elaborated on in the following sections.

B. Near-sensor Model

The near-sensor model is tasked with distinguishing FOIs
from all other frames. One way to tackle this problem is
by using a classifier. However, the frames captured by a
sensor may contain multiple objects of interest with varying
scales and positions, while classifiers are typically trained
on images that contain a single, centered object (such as

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

those found in CIFAR-10, CIFAR-100 [34], and ImageNet
[35]). These classifiers have limitations in detecting multiple
objects with varying scales and positions. As a result, a deep
object detection model is often employed instead. Among
different object detection models, YOLO [36], a single-stage
detector, is selected. Compared with two-shot detectors (e.g.,
R-CNN, Fast R-CNN, Faster R-CNN, R-FCN [37]–[40]),
YOLO is lightweight, faster, and with comparable accuracy
in a suitable scenario [41], [42]. These features make YOLO
a good candidate for being embedded into the sensor.

The output layer of YOLO contains bounding box pre-
dictions concatenated to the class prediction and objectness
confidence. However, the goal of our intelligent sensor is
to detect the existence of objects of interest, regardless of
their position in the frame. Therefore, we can only keep
the objectness confidence in the output, which can be used
further to determine FOI. We set a threshold for the objectness
confidence, and only the frames with confidence exceeding
this threshold are transmitted. As increasing the threshold, the
detection becomes stricter, resulting in fewer frames being
considered FOI. Our framework’s definition allows us to
customize the YOLO model in the following ways:

1) Model Optimization: The architectures of YOLO series
contain several repetitive blocks. Although these blocks con-
tribute to the model capacity, they make the model power-
hungry and slower during inference. For example, YOLOv5
model family has five variations: x-large, large, medium, small,
and nano. While each model shares the same structure, they
differ in the network’s depth and the number of filters in
different layers (width). Since our model does not predict
bounding boxes, we can modify its depth and width to
create a more lightweight model that still achieves comparable
performance on our task. In other words, in contrast to the
YOLO model, which predicts both the class and location of
an object, our proposed near-sensor model requires only class
prediction. This simplification allows us to reduce the number
of model parameters without compromising the accuracy of
the class prediction task.

In our experiments, we utilized three YOLO-based models,
namely YOLOv5n, YOLOv5nm, and YOLOv5ns. YOLOv5n
stands for Yolov5 nano, which is the smallest intro-
duced YOLOv5 model. By modifying the depth and width
of the YOLOv5n, we achieved more lightweight models,
which we called nano-medium (YOLOv5nm) and nano-small
(YOLOv5ns). In YOLOv5nm, the depth and width are half of
the depth and width of the YOLOv5n, and in YOLOv5ns, this
ratio is one-third for depth and one-fourth for width.

As mentioned earlier, the output of YOLO model not only
contains the confidence but also concatenates the bounding
box information, which is not required in our proposed mod-
ule. Consequently, we can remove the part of the model
associated with the bounding box during the inference to
reduce the model size.

2) Inference Simplification: YOLO utilizes non-max sup-
pression (NMS) algorithm as the final step to pick the most
appropriate bounding box for the object among all of the
predicted boxes for that specific object. NMS algorithm starts
with selecting the box with the highest objectness score among

all, removing all the boxes with high overlap with the selected
box, and repeating these steps iteratively. However, since the
sensing scenario does not require bounding boxes, we can
simplify this step. Instead of running the NMS algorithm, we
only keep the highest objectness confidence. If there is one
confidence value greater than the threshold, it indicates the
presence of at least one object in the prediction. Therefore,
by solely comparing the highest confidence value with the
threshold, we can achieve comparable performance , resulting
in reduced inference time.

3) Model Quantization & Loss Function Customization:
Model quantization is another well-known approach to accel-
erating model inference. It involves using fewer bits to store
model parameters while maintaining nearly the same level of
accuracy [43]–[46]. Aggressive quantization leads to a highly
lightweight model, but at the cost of reduced accuracy com-
pared to the original model. On the other hand, less aggressive
quantized models experience minimal accuracy loss, but they
are not as lightweight as aggressively quantized models [47].
The amount of tolerable accuracy loss varies across different
tasks. For this work, we utilized the kmeans-lut quantization
which is a Look-up-table (LUT) based quantization [48],
where LUT is generated by K-Means clustering.

Moreover, refining the loss function can enhance the perfor-
mance of the model when subjected to intensive quantization.
The conventional YOLOv5 has three loss terms:

L = lobj + lcls + lbbox (1)

where lobj , lcls, and lbbox are objectness confidence loss,
classification loss, and bounding box loss, respectively. Among
the loss terms, reducing the lobj and lcls loss terms contributes
to accurate object detection and classification, resulting in
improved performance of our model. In contrast, the lbbox
loss term, which corresponds to the precise bounding box
position, has a negative impact on our model. This is because
it forces the model to make a compromise during the gradient
descent search, making it more difficult for the model to
converge to the optimal. By removing the lbbox term, our
near-sensor model can prioritize the detection of FOIs without
considering the bounding box generation, enabling the model
to achieve a higher degree of quantization while maintaining
a comparable level of accuracy. Therefore, the following loss
function was adapted for training the near-sensor model with
a faster convergence to improve accuracy in our task:

L = lobj + lcls (2)

C. Data Transmission Frequency
The prediction of the near-sensor model regulates the fre-

quency of data transmission, thereby reducing the volume of
data transmitted to the central server. If the camera records
FOIs, it should be configured to transmit all FOIs to the
server, with a frequency equivalent to the camera’s refresh rate.
Conversely, when the camera captures background frames, it
should lower the data transmission rate to save energy. This
reduced frequency is referred to as the minimum transmission
frequency. The minimum transmission frequency can vary
between zero and the camera’s refresh rate. If the minimum

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 5

transmission frequency is set to match the camera’s refresh
rate, all frames captured by the camera are forwarded to
the server, indicating that the transmission is unaffected by
the predictions of the lightweight model. In this scenario,
the volume of data transmitted to the server is identical to
that of conventional systems. Conversely, when the minimum
transmission frequency is set to zero, any frames identi-
fied as background frames would not be transmitted to the
server. Figure 2c(1) demonstrates the data transmission of our
framework. The blue frames represent the background and
the yellow frames with an elephant depict FOIs. A positive
or negative sign is used to present the near-sensor model
predictions; The frames that are marked with a positive sign
represent the prediction of FOIs. The frames being transmitted
to the server are indicated by the Wi-Fi icon. Only the frames
that are recognized as FOI (frames 2, 3, 13, and 14), are
transmitted.

However, even though the lightweight model displays a
high level of accuracy, it is still inevitable to misdetect some
FOIs as background frames, and these misdetected frames are
all discarded when the minimum transmission frequency is
zero since the data transmission is completely halted. This
wrong discard can be alleviated by increasing the minimum
transmission frequency, which means that even if the frames
are detected as background frames, they are still transmitted
to the server regularly at a lower non-zero frequency. An
example demonstrating the effect of increasing the minimum
transmission frequency is shown in Figure 2c(2). When the
minimum transmission frequency equals zero (Figure 2c(1)),
all the frames detected as background are discarded by the
intelligent sensor. This significantly reduces the amount of data
transmitted while also losing some useful information (e.g.,
frames 9 - 12). To reduce the number of missing FOIs, we
increased the transmission frequency in Figure 2c(2). In the
figure, the camera’s refresh rate fr = 30 Hz, and the minimum
transmission frequency fmin is set to fr/2 (i.e., 15 Hz). Under
this setting, even if the transmission frequency is tuned down,
the sensor would also send one frame every two frames. From
the figure, we can observe that although the prediction of the
lightweight model maintains the same, we transmit more FOIs
to the server (frame 9 and frame 12).

D. Lazy Sensor Deactivation

Since FOIs contain valuable information, in this work,
the priority is given to transmitting all FOIs rather than
mistakenly transmitting a background frame. Therefore, we
define misdetections as the FOIs which are not transmitted.
Considering the fact that the frames in a video have temporal
correlation, we assume that if the camera captures an FOI,
the following frame is likely to be an FOI as well. Thus,
in order to reduce the misdetection of FOIs, inspired by
[49], we proposed a scheme for lazy sensor deactivation,
which considers the detection results of neighboring frames.
However, unlike the work in [49] which schedules observation
points over the target execution, our scheme entails monitoring
the number of consecutive background frames detected by the
near-sensor model. The camera maintains a high transmission

frequency until the count (C1) of consecutive background
detection reaches a pre-defined number (N). Once the number
is met, the camera tunes down the transmission frequency
and resets the count. The count is reset to zero whenever an
FOI is identified. The adoption of our lazy sensor deactivation
scheme enables the detector to rectify the misdetection of a
single frame by utilizing the adjacent frame’s information. In
comparison to the detector without the lazy sensor deactivation
scheme, utilizing our approach preserves more FOIs since
an occasional misdetection cannot affect the transmission
frequency. Decisions for tuning the transmission frequency are
made based on a few adjacent frames. Figure 2d provides
an example that demonstrates the advantages of implementing
lazy sensor deactivation. In this example, the value of N is set
to 3. When compared to the system that does not utilize lazy
deactivation (shown in Figure 2d(1)), the implementation of
lazy deactivation (Figure 2d(2)) also transmits the FOIs that
are misdetected by the near-sensor model, as demonstrated by
the transmission of frames 2, 4, and 5.

The utilization of the lazy sensor deactivation scheme incurs
two costs from a storage perspective. The first cost arises when
a negative sample is mistakenly identified as an FOI, leading to
the reset and restart of the count. In the worst-case scenario,
a single negative sample misdetection results in storing 2N
additional frames. Nonetheless, this cost is acceptable as our
primary concern lies in preserving the completeness of FOIs.
The inclusion of a few extra negative samples following FOIs
does not influence the pertinent information we aim to retain.
Moreover, given that N is not an excessively large value, our
storage capacity can handle these rare occurrences.

The second cost inherent in the lazy sensor deactivation
scheme manifests in the recovery of the transmission fre-
quency to a high level and the subsequent repetition of
counting following each period of frequency decrease. Given
that a large proportion of frames comprise background and
such frames often appear in the form of segments, the frames
following a low transmission frequency period are more likely
to be background as well. As a result, in a long sequence
of background frames, the detector stores N more frames
after each low transmission frequency period. To mitigate
the redundancy following each period, we introduced one
more count (C2) to monitor the number of consecutive low
transmission frequency periods. This count is used to calculate
Nnew for consecutive background frames:

Nnew = max(1,
N

2C2
) (3)

Upon tuning down the transmission frequency, C2 increments
by 1. However, the detection of an FOI interrupts the consecu-
tive low transmission frequency periods, resetting the count C2

to zero. At the start of each period, equation (3) determines the
number (Nnew) for that particular period. Using the count C2

for consecutive low transmission frequency periods gradually
decreases the threshold from N to 1 in the long run, leading
to greater storage and energy savings than the vanilla scheme.

Algorithm 1 outlines the pseudocode of the proposed
scheme, which incorporates minimum transmission frequency
and lazy sensor deactivation. The pseudocode 6 - 12 indicate

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

the code for lazy sensor deactivation and 14 - 20 indicate
the code for minimum transmission frequency, where fr is
the camera’s refresh rate, fmin is the minimum transmission
frequency, and C3 is a count used to determine whether
a frame should be transmitted in a minimum transmission
frequency period.

E. Dual-camera Collaboration
Recording and analyzing valuable information necessitate

the utilization of high-resolution images, thereby engendering
a predilection for high-resolution cameras. Nevertheless, the
sustained operation of such cameras for near-sensor computing
proves to be energy burdensome, given their elevated power
consumption. Our objective is to furnish dependable perfor-
mance while concurrently minimizing energy consumption.
Therefore, we integrated an additional low-resolution, and
power-efficient, camera into the sensor configuration.

During periods devoid of FOIs, the high-resolution camera
remains inactive to conserve power, while the low-resolution
camera is engaged in executing the near-sensor model, as elu-
cidated in Section II-B. When an FOI is detected by the near-
sensor model utilizing the low-resolution camera, the high-
resolution camera is activated, capturing and subsequently
transmitting the pertinent frames. During this phase, the low-
resolution camera is deactivated, given the superior quality of
the frames obtained by the high-resolution camera.

The power consumption breakdown of using dual-camera
collaboration on the sensor side is depicted in Figure 3.
The incorporation of a power-efficient low-resolution camera
results in significant power savings (highlighted in shadow),
even compared to using our module with a single high-
resolution camera. Given the infrequent occurrence of FOIs,
our dual-camera collaboration scheme proves to be highly
effective in mitigating energy consumption at the sensor side
over an extended duration.

Note that our dual-camera collaboration requires an addi-
tional low-resolution camera, which increases the cost per
device. The price of an image sensor depends on several
factors, such as resolution, sensor size, technology, dynamic
range, and noise suppression. While a basic CMOS sensor
might cost a few dollars, high-end specialized sensors can be
significantly more expensive, potentially reaching thousands
of dollars. In our system, a basic sensor is sufficient for FoI
detection, resulting in an increase of only 1/1000 to 1/100 over
the original expenses. On the other hand, these basic sensors
support at least 30 frames per second (fps), which is sufficient
for our task and does not impact efficiency.

III. EXPERIMENTS

A. Experimental Setup
In this work, we trained and evaluated our framework in

the context of animal detection using the Microsoft Com-
mon Objects in Context (MS COCO) dataset [50], which
is widely used for object detection tasks. In this context,
the images in the dataset were selected and relabeled. The
images containing at least one object belonging to the animal
category are considered FOI and are labeled 1. The remaining

Power

Time

𝑷𝒍𝒐𝒘 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏
𝒄𝒂𝒎𝒆𝒓𝒂

𝑷𝒉𝒊𝒈𝒉 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏
𝒄𝒂𝒎𝒆𝒓𝒂

𝑷𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏

No FOI No FOIFOI

Energy saving of dual camera collaboration compared to single high-resolution camera

𝑷𝒏𝒆𝒂𝒓 𝒔𝒆𝒏𝒔𝒐𝒓
𝒎𝒐𝒅𝒆𝒍

Fig. 3. Energy consumption breakdown on the sensor for the framework
utilizing dual-camera collaboration.

frames are considered background and labeled as 0. The near-
sensor lightweight model detects and transmits FOIs while
filtering out the background frames. The detected frames are
transmitted to a more sophisticated model, in our case a
well-trained Fast R-CNN model, to perform advanced oper-
ations. The framework is implemented using PyTorch [51].
In accordance with the scenario, we ordered the data in the
testset with a specific logic: FOIs and background frames are
presented in a fragmented manner, appearing consecutively
and alternating with each other. The frames in fragments are
ordered randomly.

B. Parameter Evaluation Metrics
The goal of the framework is to detect the animals in all

FOIs while minimizing the system’s energy consumption and
occupying minimal storage. In essence, our module aims to
minimize the miss detection rate, defined as the fraction of
FOIs that are not detected by our near-sensor model:

Pmiss =
nmiss

nFOI
, (4)

where nmiss is the number of missed FOIs by the near-sensor
model, and nFOI is the total number of FOIs in the stream.

In addition, we prioritized the percentage of transmission
reduction achieved by our module in comparison to sending
all frames captured by the camera, which is defined as:

Ptrans =
ntrans

nframes
, (5)

where ntrans is the number of transmitted frames, and
nframes is the total number of frames in the testset. The
energy consumption of the system, including transmission
and inference energy of the Fast R-CNN model, is closely
related to the number of transmitted FOIs; thus the percentage
of transmission reduction serves as a key indicator of the
effectiveness of our framework. In addition to impacting
energy consumption, Ptrans also reflects the amount of storage
that can be saved on the server.

It is worth emphasizing that our framework involves trade-
offs among its various parameters. Altering the values of these
parameters can lead to different performances with respect to
missed detection frames and the percentage of transmission

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 7

Fig. 4. Energy consumption of the baselines and the system adopting
our framework. The experiments are conducted with M = 20 (the total
number of the frames ntotal = 21336, Pmiss = 3% ± 0.6%). The
conventional system implements Fast R-CNN on the server.

reduction. For instance, the most extreme scenario is to
maintain the transmission frequency equal to the camera’s
refresh rate and transmit all frames to the server. Although
this setting would result in zero missed detection frames, it
would also lead to the highest possible energy consumption.
In the following, we analyze the influence of each parameter
on the performance of our framework utilizing the proposed
module and discuss the trade-offs between these parameters.

This study explores the impact of four key parameters on
our system’s performance:

• the confidence threshold (T) of YOLO
• the ratio (M) of the number of background frames to the

number of FOIs
• minimum transmission frequency (fmin)
• the count (N) at which the sensor deactivates

C. Results
The comparison of the conventional system, the ATC

method, and the system with our framework are shown in
Figure 4 (The x axis is illustrated in log scale). For the
system with our framework, we implemented two models (i.e.,
Mask R-CNN [52], Faster R-CNN) on the server, sorted in
descending order of model complexity. For the conventional
system, we used the least complex model, i.e., Fast R-CNN.
For the ATC method, we implemented Mask R-CNN by
adopting the approach described in [53]. This is because, in
ATC methods, all downstream tasks rely on the same abstract
features, requiring the complex server-side model to perform
inference for all tasks. The energy consumptions are measured
on three platforms (GeForce RTX 4090, GeForce RTX 3090,
and AMD Threadripper 5955).

The energy consumption of conventional systems comprises
three components: energy consumption by the sensor, trans-
mission energy, and inference energy consumed at the server.
Both the ATC method and the system with our framework
introduce an additional component: near-sensor model energy
consumption. Despite this additional energy consumption, both

c

conventional systema ATC method

1J 0.65J

server

camera

near-sensor model

transmission

95.9%
3.8% 0.3%

92.9%5.9%

0.7%0.5%

b

our proposed system

94.7%2.7%

0.2%2.4%

0.13J

Normalized energy consumption breakdown

Fig. 5. Normalized energy consumption breakdown. a. Conventional
system. b. ATC method. c. The system with our framework.

the ATC method and our framework reduce the overall system
energy consumption. This reduction is achieved because both
methods perform preliminary processing on low-power de-
vices, which facilitates subsequent inference. As shown in the
figure, our proposed framework helps consume less than 18%
energy in all settings compared to the conventional system,
and less than 25% energy compared to the ATC method.

Although the ATC method also employs a near-sensor
model as a feature extractor, it transmits the features of all
frames to the server for inference. In contrast to the ATC ap-
proaches, our framework does not transmit abstract features of
frames but only transmits the original frames containing useful
information, therefore, significantly reducing the number of
frames sent to the server. While the size of data transmitted
per frame may be larger compared to the ATC approaches,
our framework involves the transmission of fewer frames,
ultimately resulting in a reduction in the overall amount of
data transmitted. Additionally, the complex machine learning
model on the server in the ATC method only has access to
abstract features, therefore, the downstream tasks, such as
object detection and segmentation, rely on a single model.
However, our near-sensor model sends the original FoIs to
the server, allowing for the deployment of complex models
specifically tailored to each task. This results in superior
performance for each individual task.

The normalized energy consumption breakdown is depicted
in Figure 5. The conventional system, which consumes the
most energy, is normalized as 1, with the others adjusted
accordingly. Despite our framework introducing a negligible
energy portion to the system (near-sensor model), it reduces
the need for server-side inferences, resulting in a substantial
decrease in overall system energy consumption compared to
both the conventional system and the ATC method. it is
capable of saving 87% on the energy consumption of the
conventional system and keeps valuable information. While
the ATC method eases server-side inferences, the number of

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

inferences remains high, leading to a higher server energy
consumption compared with our system. On the other hand,
our dual-camera collaboration reduces camera energy con-
sumption compared to both the conventional system and the
ATC method.

D. Parameter Impact Analysis
Figure 6a and b present heatmaps illustrating the impact of

the key parameters on Pmiss and Ptrans. For both metrics, a
lower value indicates better performance. Regarding Pmiss, a
higher value of T leads to a notable increase in the number
of missed FOIs. However, incorporating a lazier deactivation
scheme and increasing the minimum transmission frequency
can mitigate the adverse effects associated with a higher
value of T . When examining the left panel in Figure 6,
N exerts a dominant influence on Pmiss. As N increases,
accuracy improves significantly, leading to a decrease in the
percentage of misdetections. Conversely, raising the minimum
transmission frequency has a predominantly negative impact
on Ptrans. However, adopting a high value of T can reduce
the amount of data transmission.

We also examined the relationship between M and Ptrans

and found that our framework exhibits a clear advantage as M
increases, in Figure 7. Specifically, as M increases from 5 to
50, our approach can save energy ranging from 65% to 92%
compared to the conventional system. In contrast, the energy
consumption of both the conventional method and the ATC
method increases proportionally as the amount of data grows.

The Spearman correlation coefficients [54] of the parameters
are presented in Figure 8. In the figure, a positive coefficient
indicates a positive correlation between two variables, while
a negative coefficient indicates a negative correlation. The
magnitude of the coefficient reflects the strength of the associ-
ation between the variables. Specifically, T shows a significant
positive correlation with Pmiss, indicating that as T increases,
Pmiss also increases. Conversely, N exhibits a significant
negative correlation with Pmiss, indicating that higher values
of N are associated with lower values of Pmiss. On the other
hand, the coefficient between N and Ptrans is only 0.044,
suggesting that changes in N have little influence on the per-
centage of data transmission. This observation aligns with our
analysis in Section II-D. Moreover, as the near-sensor model
operates continuously, the energy reduction in our framework
primarily stems from the decrease in data transmission and
the resulting reduction in server-side inference. Given that N
has a negligible effect on Ptrans, it also has minimal impact
on overall energy consumption. Additionally, an increase in f
corresponds to an increase in Ptrans, demonstrating a strong
direct positive correlation.

E. Model Customization Analysis
We compared the performance of various lightweight near-

sensor models mentioned in Section II-B.1. We evaluated
the trade-off between the sensitivity and specificity of these
models using receiver operating characteristic (ROC) curves
and area under the curve (AUC), as illustrated in Figure 9a.
Additionally, Table I displays the number of parameters and

TABLE I

MODEL PARAMETERS

Model Name No. of Parameters GFLOPS

YOLOv5 n 1,765,270 (100%) 4.2
YOLOv5 nm 433,190 (24.5%) 1.1
YOLOv5 ns 108,806 (6.2%) 0.4

TABLE II

DESIGN ACCELERATION ON AMD-XILINX ZCU104

LUT FF BRAM URAM DSP

Total 84.9K 146.5K 224 40 844
Available 230.4K 460.8K 312 96 1728
Utilization 36.87% 31.80% 71.79% 41.67% 48.84%

GFLOPS of each model. While the AUC of YOLOv5ns is only
slightly lower than that of YOLOv5n, the reduction in model
size is significant, with the number of parameters decreasing
to only 6.2% of the latter. Furthermore, the detrimental effect
resulting from the reduction in model size can be alleviated
by incorporating the lazy sensor deactivation scheme and
elevating the minimum transmission frequency.

We also investigated the influence of quantization on the
model performance. YOLOv5n trained on the original loss
is quantized into different bit precisions, i.e. 16-bit float
point (fp16), 8-bit integer (int8), 5-bit integer (int5), 4-bit
integer (int4). The performance of both the fp16 and int8
quantized models remains unaffected. However, as illustrated
by Figure 9b, when we further reduce bit precision to int5, a
slight degradation in AUC is observed (from 0.97 to 0.96), and
a degradation in performance is noticeable when the model is
quantized to int4 (from 0.97 to 0.93).

As discussed in Section II-B.3, the simplified loss function
reduces task difficulty, allowing the model to become more
lightweight or be more aggressively quantized. Figure 9c
illustrates the impact assessment of our tailored loss function,
demonstrating that with the tailored loss, the model can
achieve intensive quantization while maintaining comparable
performance levels. The model trained on the adapted loss
achieves a higher AUC score under the same level of aggres-
sive quantization (int4 quantization) compared to the model
trained on the original loss. It achieves the same AUC as the
model training on the original loss with the precision float
fp32. Since fp32 requires 32 bits (4 bytes) per parameter,
while int4 only requires 4 bits (0.5 bytes) per parameter, jointly
adopting the quantization and the customized loss can make
the model 8x smaller without losing performance.

F. Hardware Implementation
The setup on the sensor side is depicted in Figure 10a. A

high-resolution camera (4⃝), a low-resolution camera (3⃝), and
a Wi-Fi adaptor (2⃝) are connected to the FPGA board (1⃝)
via cable to capture and transmit the frames to the server. In
addition, a screen is utilized for visualizing the information
captured by the camera.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 9

a

b

Fig. 6. Performance evaluation. a. Heatmaps that display the miss rate Pmiss with different parameter combinations (threshold (T), the ratio
(M) of the number of background frames to the number of FOIs, minimum transmission frequency (fmin), and the count (N) at which the sensor
deactivates). b. Heatmaps that display the percentage of transmission Ptrans with different parameter combinations.

To meet the requirements of the proposed scenario, the near-
sensor model is deployed on a resource-limited low-power
edge-level FPGA: AMD-Xilinx Zynq UltraScale+ MPSoC
ZCU104 (ZCU104) [55]. FPGAs are semiconductor devices
that are based on a matrix of configurable logic blocks (CLBs)
connected via programmable interconnects. Through hardware
programming (such as Verilog or HLS), we can implement
an ML accelerator on FPGA. The host program, executed on
the ARM Cortex-A53 processor on the ZCU104’s processing
system (PS), was developed in Python. The communication be-
tween the processing system (PS) and the programmable logic
(PL) is established through the AMBA Advanced eXtensible
Interface (AXI). Here PS side is a host ARM processor and
PL side is a reconfigurable logic. Our architecture design is

implemented on the top of PL (reconfigurable logic).
To leverage hardware acceleration, we utilized the AMD-

Xilinx deep learning unit (DPU) intellectual property (IP)
as our hardware accelerator on the ZCU104’s programmable
logic (PL) side. Our model was integrated into the DPU using
the Vitis AI framework [56]. Vitis AI is an ML compiler
framework developed by AMD-Xilinx that automatically maps
ML operations (such as convolution and fully connected
layers) into Xilinx hardware IP. The Vitis AI version that
we choose is 2.0. Furthermore, the cameras are connected
to the host ARM CPU, which facilitates communication with
the cloud server. TCP protocol is used as the communication
protocol. Table II, we present the FPGA resource utilization
result. In Figure 10b, we present the accelerator placement

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

Fig. 7. Energy consumption comparison across different values of M .
All servers are equipped with GeForce RTX 3090.

Fig. 8. Spearman coefficient of the parameters. The magnitude
of the coefficient reflects the strength of the association between
Pmiss, Ptrans and the variables (T: the confidence threshold of the
model, M: the ratio of the number of background frames to the number of
FOIs, f: minimum transmission frequency, N: The count at which sensor
deactivates.)

layout on AMD Xilinx ZCU104 FPGA. The overview of our
hardware platform is shown in Figure 11.

Considering the constraints of resources such as power
and space, we sometimes need to reduce the acceleration
performance of deep processing units (DPU) [57], [58]. For
instance, in Table II, we select the parallelism for input,
output, and pixel processing of convolution operations to be
16, 16, and 8, respectively. If the goal is to reduce power con-
sumption and resource utilization, one strategy is to decrease
computation parallelism. Another strategy involves employing
knowledge distillation and quantization to minimize model
size, thereby reducing the computational overhead of edge
hardware accelerators [5], [59]. In this work, we concentrate
on accelerating the near-sensor framework on edge FPGAs.
However, we may also consider other AI computing platforms
such as Google Edge TPU and NVIDIA Jetson Nano [60].
These chips facilitate easier programming of machine learning
models but compromise the capability for hardware resource
reconfiguration.

G. Other Applications

In addition to visual monitoring, our proposed framework
can be readily applied for multiple other tasks, such as audio
processing, and Radar monitoring.

For the audio processing task, we used the UrbanSound8K
dataset [61], a public audio dataset for urban sound classifi-
cation applications. It contains 10 classes, including car horn,
gunshot, and dog bark. We focused on the gunshot and siren
classes as the audio of interest. The dataset was reorganized
and relabeled following the strategy outlined in Section III-A.
The near-sensor model detects the audio of interest, while the
server model classifies the specific class of that audio segment.
A frequency-domain filter bank is applied to the audio signals,
which are windowed in the time domain, to generate Mel
spectrograms. These spectrograms are then fed into a CNN for
classification. Compared to conventional methods, the system
adopting our framework maintains comparable accuracy while
consuming only 25% of the energy.

For radar monitoring, we evaluated framework using the
CRUW dataset [62], a public camera-radar dataset designed
for autonomous vehicle applications. The radar images in this
dataset are captured by the TI AWR1843, which operates at
approximately 30W [63]. The dataset was processed following
the procedure outlined in Section III-A. Under the same
deployment settings, the system using our framework achieved
comparable performance while consuming only 18% of the
energy required by the conventional system.

H. Security and privacy analysis

While our framework offers advantages such as reduced
energy consumption and minimized bandwidth requirements,
it necessitates an investigation of its security and privacy im-
plications. Security considerations encompass data encryption
both in transit and at rest. On the other hand, privacy concerns
entail data minimization through near-sensor processing and
anonymization techniques, user consent, and transparency re-
garding data usage. Compared with ATC methods that transmit
abstract features, our framework transmits the original frames,
thus sacrificing data encryption during transmission. However,
it’s worth noting that the conventional system also lacks
data encryption during data transmission. This weakness can
be mitigated by employing encryption techniques tailored
specifically to image data. Additionally, both ATC methods
and our framework introduce an extra near-sensor model
component. Since the model is situated near the sensor and
only processes incoming data locally, it does not leak any
information, ensuring data safety.

IV. LIMITATIONS

While our framework is highly effective, there are a few
limitations to consider for further improvements in the future
works:

1) Initial Training and Labeled Data Requirement:
Deploying the framework necessitates training the near-
sensor model with labeled data. In some scenarios,
obtaining labeled data may be challenging, or it might

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 11

a b c

Fig. 9. Model comparison. a ROC curves of three lightweight models. b ROC curves of the models with different quantization trained by original
loss. c The ROC curves of the model subjected to int4 quantization, trained with our adapted loss function and the original loss function.

FPGA

Wi-Fi adaptor

Low resolution camera

High resolution camera

a b

Fig. 10. Experiment setup. a. Sensor side setup. b. Accelerator
placement layout on AMD Xilinx ZCU104 FPGA.

be difficult to fully cover the data distribution of sensor
data. This introduces an initial cost associated with the
deployment of the near-sensor module. However, after
this initial cost, the framework can save substantial
energy, especially on the server side.

2) Accuracy Trade-offs: Due to the lightweight nature of
the near-sensor model, its accuracy may be lower than
that of the original, more complex model. Although
we have proposed schemes such as lazy deactivation
and maintaining a non-zero transmission frequency to
mitigate possible misdetections, the near-sensor model’s
accuracy is still slightly lower than the server-side
model. While this loss of accuracy is negligible in many
scenarios, it becomes critical in applications where high
accuracy is paramount. In such cases, the near-sensor
model may need to be less lightweight, which would
reduce the energy savings.

3) Environmental Constraints: The performance of our
framework is dependent on the ratio of background
frames to FOIs. In environments where this ratio is
lower, the energy savings and efficiency improvements
may not be as significant.

In future work, we aim to enhance the performance of the
near-sensor model while maintaining its low energy consump-
tion and reducing the initial deployment cost of the framework.

V. DISCUSSION

In this article, we introduce a novel framework for intelli-
gent sensing that addresses some of the challenges associated
with analyzing large-scale sensor data using complex ML
models. Our framework is designed based on the observa-
tion that in many IoT applications, only a small proportion
of sensor data conveys information of interest. Therefore,
our framework intelligently selects the data generated by
the sensors and only transmits and analyzes the data with
useful information. It employs a near-sensor model to detect
information of interest and control the data transmission,
and a complex model located in the server to implement
more sophisticated inference. The near-sensor model and the
minimum transmission frequency are beneficial to reduce the
energy and storage requirements, with a focus on decreasing
the transmission frequency when no useful information is
detected.

We set up the system with our framework on a low-
power FPGA and evaluated the performance. The experimental
results demonstrate that our framework significantly reduces
total energy consumption and storage usage to less than
10% of that of conventional systems while retaining over
95% of useful information. Furthermore, we customized the
model architecture and the loss function to suit our specific
scenario and implemented quantization to achieve additional
model compression. By jointly applying the customized loss
function and quantization, the near-sensor model achieves an
8x reduction in size without any loss in performance.

We also investigated the key factors influencing the frame-
work’s effectiveness. Instead of completely halting data trans-
mission when no FoI is detected, we maintain a non-zero
minimum transmission frequency. This ensures regular, low-
frequency transmission to the server even in the absence of
FoIs, thereby benefiting the integrity of the useful information.
Additionally, our lazy sensor deactivation scheme leverages
the temporal correlation between adjacent frames, achieving a
balance between resource consumption and accuracy. Further-
more, our proposed framework demonstrates greater effective-
ness as the ratio of background frames to FoIs increases.

In addition to the evaluations under the visual monitoring
scenario, we extended the framework to other tasks, e.g.,
audio processing, and Radar monitoring. The results show the

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

versatility and applicability of our framework under different
scenarios.

We also discussed the limitations of our current framework
and outlined potential directions for future improvements.

DATA AVAILABILITY STATEMENT

The dataset Microsoft COCO object detection for this study
can be found in [50]. The raw data supporting the conclusion
of this article will be made available by the authors, without
undue reservation.

ACKNOWLEDGMENT

We express our gratitude to Andrew Ding for the discussion
and meticulous proofreading to improve the earlier version of
the manuscript.

APPENDIX I
SUPPLEMENTARY MATERIAL

Video Demo

Our research includes a video demonstration showcasing
the results. In the demo, our model detects the animals
appearing in the frames. The video can be accessed at the
following link: https://drive.google.com/file/
d/1-IpRLfd8Ym38p8APCJgxNq5igiK5ARa5/view?
usp=sharing

DDR4

ARM

Cortex A53

DPU

A
X

I In
terco

n
n

ect

Vitis AI

Control & Visualization

Wi-Fi adaptor

Fig. 11. Hardware platform overview.

REFERENCES

[1] M. M. Sadeeq et al., “Iot and cloud computing issues, challenges and
opportunities: A review,” Qubahan Academic Journal, vol. 1, no. 2, pp.
1–7, 2021.

[2] L. Yang et al., “Iot data analytics in dynamic environments: From an
automated machine learning perspective,” Engineering Applications of
Artificial Intelligence, vol. 116, p. 105366, 2022.

[3] Y. Djenouri et al., “Sensor data fusion for the industrial artificial
intelligence of things,” Expert Systems, vol. 39, no. 5, p. e12875, 2022.

[4] S. Yun, H. Chen, R. Masukawa, H. Errahmouni Barkam, A. Ding,
W. Huang, A. Rezvani, S. Angizi, and M. Imani, “Hypersense: Hy-
perdimensional intelligent sensing for energy-efficient sparse data pro-
cessing,” Advanced Intelligent Systems, p. 2400228, 2024.

[5] Y. Ni et al., “Heal: Brain-inspired hyperdimensional efficient active
learning,” arXiv preprint arXiv:2402.11223, 2024.

Algorithm 1 Intelligent data transmission
Require: YOLO prediction(y), Lazy sensor deactivation

count(N), Camera refresh rate(fr), Minimum transmission
frequency(fmin), C1, C2, C3 = 0, 0, 0

Ensure: Transmission decision(D)
1: if y == 1 then
2: C1, C2, C3 = 0, 0, 0
3: return D = 1
4: else
5: if C3 == 0 then
6: C1 = C1 + 1
7: if C1 ≤ max(1, N

2C2
) then

8: return D = 1
9: else

10: C1, C2, C3 = 0, C2 + 1, C3 + 1
11: return D = 0
12: end if
13: else
14: C3 = C3 + 1
15: if C3 == fr/fmin then
16: C1, C3 = C1 + 1, 0
17: return D = 1
18: else
19: return D = 0
20: end if
21: end if
22: end if

[6] V. Tsakanikas et al., “An intelligent model for supporting edge migra-
tion for virtual function chains in next generation internet of things,”
Scientific reports, vol. 13, no. 1, p. 1063, 2023.

[7] M. Kumari et al., “Deep learning techniques for remote sensing image
scene classification: A comprehensive review, current challenges, and
future directions,” Concurrency and Computation: Practice and Expe-
rience, p. e7733, 2023.

[8] H. Chen et al., “Taskclip: Extend large vision-language model for task
oriented object detection,” arXiv preprint arXiv:2403.08108, 2024.

[9] G. Wang et al., “Event-triggered online energy flow control strategy
for regional integrated energy system using lyapunov optimization,”
International Journal of Electrical Power & Energy Systems, vol. 125,
p. 106451, 2021.

[10] C.-F. Liu et al., “Dynamic task offloading and resource allocation
for ultra-reliable low-latency edge computing,” IEEE Transactions on
Communications, vol. 67, no. 6, pp. 4132–4150, 2019.

[11] Z. Sun et al., “Cloud-edge collaboration in industrial internet of things:
A joint offloading scheme based on resource prediction,” IEEE Internet
of Things Journal, vol. 9, no. 18, pp. 17 014–17 025, 2021.

[12] Y.-H. Chiang et al., “Joint cotask-aware offloading and scheduling in
mobile edge computing systems,” IEEE Access, vol. 7, pp. 105 008–
105 018, 2019.

[13] M. Chen et al., “Task offloading for mobile edge computing in soft-
ware defined ultra-dense network,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 587–597, 2018.

[14] Y. Wang et al., “Cooperative task offloading in three-tier mobile comput-
ing networks: An admm framework,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 3, pp. 2763–2776, 2019.

[15] Z. Zheng et al., “A stackelberg game approach to proactive caching
in large-scale mobile edge networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 8, pp. 5198–5211, 2018.

[16] Y. Sun et al., “Deep reinforcement learning-based mode selection and
resource management for green fog radio access networks,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1960–1971, 2018.

[17] S. Yu et al., “Computation offloading for mobile edge computing:
A deep learning approach,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC). IEEE, 2017, pp. 1–6.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 13

[18] Z. Ali et al., “A deep learning approach for energy efficient computa-
tional offloading in mobile edge computing,” IEEE Access, vol. 7, pp.
149 623–149 633, 2019.

[19] M. Issa et al., “Hyperdimensional hybrid learning on end-edge-cloud
networks,” in 2022 IEEE 40th International Conference on Computer
Design (ICCD), 2022, pp. 652–655.

[20] H. Yang et al., “Brainiot: Brain-like productive services provisioning
with federated learning in industrial iot,” IEEE Internet of Things
Journal, vol. 9, no. 3, pp. 2014–2024, 2021.

[21] A. Biswas et al., “Conv-sram: An energy-efficient sram with in-memory
dot-product computation for low-power convolutional neural networks,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217–230, 2019.

[22] C. Lammie et al., “Low-power and high-speed deep fpga inference
engines for weed classification at the edge.” IEEE Access, vol. 7, pp.
51 171–51 184, 2019.

[23] H. Chen et al., “Scalable and interpretable brain-inspired hyper-
dimensional computing intelligence with hardware-software co-design,”
in 2024 IEEE Custom Integrated Circuits Conference (CICC). IEEE,
2024, pp. 1–8.

[24] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, pp. 91–110, 2004.

[25] H. Bay et al., “Surf: Speeded up robust features,” in Computer Vision–
ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9. Springer, 2006, pp.
404–417.

[26] S. Leutenegger et al., “Brisk: Binary robust invariant scalable keypoints,”
in 2011 International conference on computer vision. Ieee, 2011, pp.
2548–2555.

[27] N. Tishby et al., “The information bottleneck method,” arXiv preprint
physics/0004057, 2000.

[28] L. Xiang et al., “Compressed data aggregation for energy efficient
wireless sensor networks,” in 2011 8th annual IEEE communications
society conference on sensor, mesh and ad hoc communications and
networks. IEEE, 2011, pp. 46–54.

[29] F. Schroff et al., “Facenet: A unified embedding for face recognition and
clustering,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.

[30] Y. Sun et al., “Deepid3: Face recognition with very deep neural
networks,” arXiv preprint arXiv:1502.00873, 2015.

[31] A. M. Ghosh et al., “Edge-cloud computing for internet of things data
analytics: Embedding intelligence in the edge with deep learning,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2191–2200,
2021.

[32] B. Yogameena et al., “Deep learning-based helmet wear analysis of
a motorcycle rider for intelligent surveillance system,” IET Intelligent
Transport Systems, vol. 13, no. 7, pp. 1190–1198, 2019.

[33] W. Huang et al., “Exploration of using a pressure sensitive mat for
respiration rate and heart rate estimation,” in 2021 43rd Annual Inter-
national Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE, 2021, pp. 298–301.

[34] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[35] J. Deng, “A large-scale hierarchical image database,” Proc. of IEEE
Computer Vision and Pattern Recognition, 2009, 2009.

[36] J. Redmon et al., “You only look once: Unified, real-time object
detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[37] R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 580–587.

[38] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[39] S. Ren et al., “Faster r-cnn: Towards real-time object detection with
region proposal networks,” Advances in neural information processing
systems, vol. 28, 2015.

[40] J. Dai et al., “R-fcn: Object detection via region-based fully convolu-
tional networks,” Advances in neural information processing systems,
vol. 29, 2016.

[41] L. Deng et al., “Lightweight aerial image object detection algorithm
based on improved yolov5s,” Scientific Reports, vol. 13, no. 1, p. 7817,
2023.

[42] M. Zahrawi et al., “Improving video surveillance systems in banks using
deep learning techniques,” Scientific Reports, vol. 13, no. 1, p. 7911,
2023.

[43] A. Alqahtani et al., “Literature review of deep network compression,”
in Informatics, vol. 8, no. 4. MDPI, 2021, p. 77.

[44] A. Goel et al., “A survey of methods for low-power deep learning and
computer vision,” in 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT). IEEE, 2020, pp. 1–6.

[45] C. N. Coelho et al., “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle
detectors,” Nature Machine Intelligence, vol. 3, no. 8, pp. 675–686,
2021.

[46] I. Chakraborty et al., “Constructing energy-efficient mixed-precision
neural networks through principal component analysis for edge intel-
ligence,” Nature Machine Intelligence, vol. 2, no. 1, pp. 43–55, 2020.

[47] H. Wu et al., “Integer quantization for deep learning inference: Principles
and empirical evaluation,” arXiv preprint arXiv:2004.09602, 2020.

[48] F. Cardinaux et al., “Iteratively training look-up tables for network
quantization,” IEEE Journal of Selected Topics in Signal Processing,
vol. 14, no. 4, pp. 860–870, 2020.

[49] G. Caravagna et al., “Lazy security controllers,” in International Work-
shop on Security and Trust Management. Springer, 2012, pp. 33–48.

[50] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in
Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer,
2014, pp. 740–755.

[51] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems,
vol. 32, 2019.

[52] K. He et al., “Mask r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2961–2969.

[53] Y. Matsubara et al., “Split computing for complex object detectors: Chal-
lenges and preliminary results,” in Proceedings of the 4th International
Workshop on Embedded and Mobile Deep Learning, 2020, pp. 7–12.

[54] C. Spearman, “The proof and measurement of association between two
things.” 1961.

[55] A. Xilinx, “Zynq ultrascale,” 2023, https://www.xilinx.com/products/
boards-and-kits/zcu104.html [Accessed: 12/12/2023].

[56] V. Kathail, “Xilinx vitis unified software platform,” in Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2020, pp. 173–174.

[57] H. Chen et al., “Hypergraf: Hyperdimensional graph-based reasoning
acceleration on fpga,” in 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 2023, pp. 34–41.

[58] H. Lee et al., “Comprehensive integration of hyperdimensional com-
puting with deep learning towards neuro-symbolic ai,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp.
1–6.

[59] H. E. Barkam et al., “Reliable hyperdimensional reasoning on unreliable
emerging technologies,” in 2023 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[60] W. Huang et al., “Ecosense: Energy-efficient intelligent sensing for in-
shore ship detection through edge-cloud collaboration,” arXiv preprint
arXiv:2403.14027, 2024.

[61] J. Salamon et al., “A dataset and taxonomy for urban sound research,” in
Proceedings of the 22nd ACM international conference on Multimedia,
2014, pp. 1041–1044.

[62] Y. Wang et al., “Rethinking of radar’s role: A camera-radar dataset and
systematic annotator via coordinate alignment,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2815–2824.

[63] W. Li et al., “Real-time fall detection using mmwave radar,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 16–20.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3440988

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 13,2024 at 23:56:32 UTC from IEEE Xplore. Restrictions apply.

