
3098 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 11, NOVEMBER 2024

Hyperdimensional Brain-Inspired Learning for
Phoneme Recognition With Large-Scale

Inferior Colliculus Neural Activities
Yang Ni , Graduate Student Member, IEEE, Ye Yang, Hanning Chen , Graduate Student Member, IEEE,
Xianhui Wang , Nicholas Lesica, Fan-gang Zeng , Fellow, IEEE, and Mohsen Imani , Member, IEEE

Abstract—Objective: Develop a novel and highly efficient
framework that decodes Inferior Colliculus (IC) neural activ-
ities for phoneme recognition. Methods: We propose using
Hyperdimensional Computing (HDC) to support an efficient
phoneme recognition algorithm, in contrast to widely ap-
plied Deep Neural Networks (DNN). The high-dimensional
representation and operations in HDC are rooted in hu-
man brain functionalities and naturally parallelizable, show-
ing the potential for efficient neural activity analysis. Our
proposed method includes a spatial and temporal-aware
HDC encoder that effectively captures global and local pat-
terns. As part of our framework, we deploy the lightweight
HDC-based algorithm on a highly customizable and flexi-
ble hardware platform, i.e., Field Programmable Gate Ar-
rays (FPGA), for optimal algorithm speedup. To evaluate
our method, we record IC neural activities on gerbils while
playing the sound of different phonemes. Results: We com-
pare our proposed method with multiple baseline machine
learning algorithms in recognition quality and learning ef-
ficiency, across different hardware platforms. The results
show that our method generally achieves better classifica-
tion quality than the best-performing baseline. Compared
to the Deep Residual Neural Network (i.e., ResNet), our
method shows a speedup up to 74×, 67×, 210× on CPU,
GPU, and FPGA respectively. We achieve up to 15% (10%)
higher accuracy in consonant (vowel) classification than
ResNet. Conclusion: By leveraging brain-inspired HDC for
IC neural activity encoding and phoneme classification,
we achieve orders of magnitude runtime speedup while
improving accuracy in various challenging task settings.
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Significance: Decoding IC neural activities is an important
step to enhance understanding about human auditory sys-
tem. However, these responses from the central auditory
system are noisy and contain high variance, demanding
large-scale datasets and iterative model fine-tuning. The
proposed HDC-based framework is more scalable and vi-
able for future real-world deployment thanks to its fast train-
ing and overall better quality.

Index Terms—Biosignal processing, brain-inspired com-
puting, efficient machine learning, hyperdimensional com-
puting (HDC).

I. INTRODUCTION

IN THE nervous system, information such as sensation, per-
ception, and memory is encoded in neural activities such

as action potentials of the neuron population [1]. Identifying
how this information is embedded will significantly improve
our understanding of the brain mechanism [2], which eventually
helps cope with sensorineural disorders and achieve general
artificial intelligence. In the past two decades, researchers have
been trying to decode useful information from neural activity
recordings of various natures. For example, electroencephalog-
raphy (EEG) and electrocardiography (ECoG) were used in
emotion recognition [3], epilepsy detection [4], and imaginary
motion recognition [5].

Learning from neural activities and decoding hidden infor-
mation are never trivial tasks. There are mainly three challenges
regardless of which learning mechanism is leveraged. (1) Neural
activity recordings usually contain a significant amount of noise,
coming from sources like environmental interference, motion
artifacts, and biological signals unrelated to target tasks. For
most kinds of neural activities, due to the lack of models for
simulating clean signals, it is extremely hard to isolate useful
signals from a noisy mixture. (2) Neural signals are intrinsically
high-dimensional and rich in terms of embedded information,
mainly because of the vast number of neurons in brains. Learning
with neural activities requires highly sophisticated ML algo-
rithms. (3) In addition, collecting datasets of neural responses on
actual subjects is a cumbersome task by itself, thereby limiting
the amount of available data for high-quality learning.

Traditionally, learning on neural activities is performed using
logistic regression or support vector machine (SVM). More
recently, ML algorithms based on deep neural networks (DNN)
have become the most popular way to extract information from
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EEG and ECoG for classification [6], [7]. However, the power
of DNNs comes at a cost: the large number of layers that form
their deep structure brings huge computation costs. The bulky
backpropagation training process further slows down the model
learning process, making DNN very expensive to operate on
hardware platforms. In addition, the quality, and more impor-
tantly, the quantity of available data for training are dominant
factors of DNN learning performance [8]. Therefore, for noisy
and expensive-to-collect neural signal data, we need a more
efficient ML alternative.

We propose to leverage HyperDimensional Computing
(HDC), a lightweight computing framework that mimics the
brain at abstract and functional level [9]. HDC uses a high-
dimensional representation of the data, i.e., hypervectors, which
encode information in a holographic way. This means that the
information is evenly distributed in each element of the hy-
pervector. The holographic representation enables hypervector
operations (e.g., bundling and binding) that are conceptually
similar to neural activities, supporting different types of brain
functionalities such as learning, reasoning, and memorization.
The benefits of using HDC also include higher learning quality,
being more hardware-friendly, and intrinsic computational par-
allelism. Prior work [10] shows that, by customizing hardware
architecture, the HDC-based algorithm achieves orders of mag-
nitude better learning efficiency during real-world deployments.

Prior works have explored possible HDC solutions for bio-
signal (including neural signal) processing, achieving signifi-
cantly better learning efficiency [11], [12], [13]. However, these
works have several limitations: (1) the bio-signals they study
have relatively small sizes and thus are easier to process like
regular feature vectors. (2) the HDC algorithms applied (e.g.,
N-gram HDC) are not suitable for bio-signals with larger tem-
poral and spatial scales. (3) the heavy use of permutation during
encoding and the lack of non-linearity lead to poor efficiency
and accuracy when the task scales.

In this paper, we design an HDC-based algorithm for learning
on large-scale neural activity, which aims to provide higher effi-
ciency than other major ML algorithms and solve the aforemen-
tioned problems in existing HDC algorithms. Our contributions
are listed below:

� To the best of our knowledge, for the first time, we leverage
HDC for learning on Inferior Colliculus (IC) neural activ-
ity. We focus on phoneme recognition since the inferior
colliculus is one of the key components in the auditory
system. To build the dataset for learning and evaluation,
we record IC neural activity from gerbils. In Section II,
we introduce more details regarding data collection.

� We design a temporal and spatial-aware HDC encoding
method that supports large-scale neural activity inputs
such as IC recordings, solving multiple limitations of
prior algorithms. During the encoding, we utilize multiple
overlapping windows to capture possible shifts in patterns;
the inputs are temporally sorted to maintain temporal
information while avoiding the use of costly permutation;
the encoder also supports the extraction of non-linear
features.

� We implement our proposed framework on four dif-
ferent hardware platforms (including embedded GPU

Fig. 1. Overview of: A. Different components of the human auditory
system, which can be roughly categorized into peripheral and central
auditory system; B. MUA recording in gerbil IC that records 512-channel
neural response; C. Channel frequency distribution.

and FPGA) and compare its learning performance and
efficiency with four baseline ML algorithms, includ-
ing multi-layer perceptron (MLP), SVM, and two Con-
volutional Neural Networks (CNN) (i.e., ResNet and
SqueezeNet). The experimental results show that our
framework achieves higher or comparable classification
accuracy under different settings, compared to the best-
performing baseline. In terms of learning efficiency, our
HDC-based algorithm is up to 210× faster than Deep
Residual Neural Network (ResNet) on a customizable
hardware platform (i.e., FPGA), On conventional plat-
forms, we still provide 74× speedup on CPU and 67×
speedup on GPU.

II. INFERIOR COLLICULUS NEURAL ACTIVITIES RECORDINGS

FOR PHONEME RECOGNITION

Our study focuses on extracting encoded sound information
from multi-unit activity (MUA) recordings acquired from the
inferior colliculus (IC) of gerbils. Previous studies have looked
into phoneme recognition using EEG [14] and ECoG [15], [16].
Compared with EEG and ECoG, MUA recording is able to pro-
vide us the more detailed neural activities through spike sorting
technique [17]. This allows us to decode information from actual
neural activities instead of electric potential fluctuations, which
may advance our understanding of neural encoding schemes.
The sound information being extracted is 22 consonants or 13
vowels spoken by 10 speakers in English language, which is a
harder task than a previous study [18]. All experimental proto-
cols were approved by the U.K. Home Office (PPL P56840C21)
on 12/20/2022.

A. Auditory System

The auditory system consists of the peripheral auditory sys-
tem and the central auditory system (Fig. 1A). The peripheral
auditory system converts mechanical sound waves into neural
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activities which then progress through the central auditory sys-
tem consisting of several layers of neurons. The first layer of the
central auditory system is the auditory nerve (AN). There are
about 31,000 ANs in the human auditory system [19]. Sound
waves of different frequencies are converted to neural activities
of different ANs, and each AN has its preferred frequency at
which it produces the greatest response [20]. After AN, the
neural signal propagates through the cochlear nucleus (∼96,000
neurons [21]), inferior colliculus (∼400,000 neurons [22]) and
finally to the auditory cortex (∼108 neurons [22]) where they
further interact with signals from other regions in the cortex
to affect sound-related events. In the central auditory system,
IC is an important relay that integrates signals from major
ascending auditory pathways. This enables the extraction of
acoustic information from a relatively small population. Mean-
while, compared with neural activities in the auditory cortex,
the activities in IC are less modulated by different other signals,
and still predominantly determined by sound waves. Like the
auditory nerves, the neurons in IC also have their preferred
frequency, i.e., Best Frequency (BF).

B. Neural Activity Recording Techniques

Electrophysiology is the process of directly recording the
electric activities of the neurons. This includes EEG, ECoG,
MUA recording, and single-unit activity (SUA) recording. From
EEG to SUA, the recorded area shrinks while the spatial reso-
lution of the recording increases [23]. For example, in EEG and
ECoG recordings, each electrode records the summed electric
fluctuation from millions of neurons. On the other hand, MUA
records tens or hundreds of neurons through electrode arrays
inserted into the brain. Among these methods, MUA recording
has significantly better resolution than EEG and ECoG and also
covers a larger population of neurons than SUA, keeping a good
balance between accuracy and coverage.

C. MUA Recording and Spike Sorting

Due to the invasive nature of the MUA recording, it is done
in gerbils, which have a similar frequency response curve to
humans [24]. The MUA in use is recorded from multiple gerbils
with normal hearing using a 512-channel electrode array (256
sites per hemisphere) at 24414.0625 Hz (Fig. 1B). We select a
total of 1669 channels with identifiable spikes across all gerbils
for further analysis. The neural activities are down-sampled by
a factor of 32 by summing every 32 samples. The final sample
rate of the neural time series is about 763 Hz (24415.0625/32),
which is close to the firing rate of IC neurons [25].

We identify the best frequency (BF) for each of the 1669 chan-
nels. These channels are randomly sampled without replacement
to form 15 populations according to the BF distribution shown in
Fig. 1C. In each population, the number of channels associated

with each BF is given by N(bf) =
⌊
T (bf)
15

⌋
, where T (bf) is the

total number of channels (out of 1669) with frequency bf . After
sampling, there are 100 channels for each population and the
excessive channels are dropped. The 15 populations function as
multiple trials in our dataset.

D. Phoneme Recognition Using Neural Recordings

During the MUA recording, gerbils were listening to
consonant-vowel speech utterances taken from the Articulation
Index LSCP (LDC catalog number: LDC2015S12). The selected
speech utterances include 286 consonant-vowel combinations
(22 consonants and 13 vowels) spoken by 10 speakers (5 males
and 5 females). To further test if the information can be extracted
from noisy speech. The speech utterances were mixed with two
additive speech bubble noises at 0 dB SNR and presented to ger-
bils during MUA recording. For each condition (clean, noisy_1,
noisy_2), the speech utterances were presented randomly at an
intensity of 60 dB SPL and 85 dB SPL. The first 188 time
bins (∼246 ms) of the neural activities after utterance onset
were considered as the responses to the speech utterances. All
classification tasks were performed based on the neural activities
of 100 channels by 188 time bins. Our dataset contains 42900
such multi-channel neural activities (286 consonant-vowel, 10
speakers, and 15 populations), forming a large-scale neural
activity dataset.

III. HYPERDIMENSIONAL COMPUTING: MOTIVATION AND

BACKGROUND

As is shown in the previous section, human brains inte-
grate and process external information, such as sound, with
a large number of neurons. Inside human brains, the cere-
bellum cortex is considered a significant component in brain
cognitive activities [26]. The information of sensory inputs is
stored in the cerebellum cortex using high-dimensional neural
activity patterns. Experimental evidence shows that it actively
participates in semantic processing as well as phonological
processing [27]. This motivates us to leverage HDC for neural
activity processing and phoneme recognition. HDC is backed
by a set of hypervector operations that tries to simulate brain
functionalities such as short-term memorization and learning
through high-dimensional patterns. In the rest of this section,
we introduce some of the major HDC operations, and how they
help achieve brain-style learning and memorization.

In HDC, randomness is the key to enabling fast learning,
robustness, and other favorable characteristics [9]. To begin with,
we generate random bipolar hypervectors �H where each ele-
ment h is identically and independently distributed (i.i.d.), e.g.,
�H ∈ [+1,−1]D where P (h = 1) = P (h = −1) = 0.5. When
the dimensionality of hypervectors is very large, e.g., D �
10000, randomly generated hypervectors are pseudo-orthogonal
to each other. For instance, we check the cosine similarity
between �Hi and �Hj as the following: δ( �Hi, �Hj) ≈ 0 for every
i �= j. In fact, there is a high probability that two hypervectors
randomly picked from the high-dimensional space have nearly
zero cosine similarity. It should be noted that bipolar or binary
hypervector is used for simplicity here, however, hypervectors
with higher precision such as real/complex value also possess
this property. For human beings who are more familiar with
lower-dimensional space, pseudo-orthogonality is one of the
non-intuitive properties of hypervector space, and there are a
few more that help define HDC operations. The following are
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major HDC operations that form the so-called ‘Multiply-Add-
Permute’ in HDC [28]:

� Binding (∗) stands for element-wise multiplication. The
binding of two orthogonal hypervectors will result in a
third hypervector that is near-orthogonal to both con-
stituents. In the case of �Hk = �Hi ∗ �Hj , the dot product
between �Hk and �Hi (or between �Hk and �Hj) will be
very close to zero as their elements all follow a symmet-
ric random distribution. And if we compute the cosine
similarity δ between these two pairs of hypervectors, we
observe that δ( �Hi, �Hi ∗ �Hj) ≈ δ( �Hj , �Hi ∗ �Hj) ≈ 0. The
near-zero cosine similarity also shows that these hyper-
vectors are near-orthogonal to one another.

� Bundling (+) is defined as the element-wise addition:
�Hij = �Hi + �Hj . Unlike binding operation that creates
dissimilar hypervectors, the output of the bundling opera-
tion preserves similarity to inputs. In terms of cosine sim-
ilarity, this means δ( �Hij , �Hi) � 0 and δ( �Hij , �Hj) � 0.
This operation reveals that HDC is capable of memoriz-
ing information by bundling different hypervectors and
checking existence of queries via similarity metrics.

� Permutation (ρ) rotate-shifts hypervectors by one ele-
ment. It creates pseudo-orthogonal hypervectors based on
existing ones, i.e., δ( �Hi, ρ �Hi) ≈ 0. One important func-
tion is to preserve temporal relations between different
inputs. With permutation, we can distinguish between
two different sequences with the same components, e.g.,
�A = �Hi + ρ �Hj + ρρ �Hk and �B = �Hj + ρ �Hi + ρρ �Hk.

IV. AN HDC-BASED FRAMEWORK FOR LEARNING ON

NEURAL ACTIVITY

In this paper, we propose a hyperdimensional learning al-
gorithm for phoneme recognition, which operates on the IC
neural activity dataset introduced in Section II. In the next few
subsections, we first introduce our HDC encoder designed for
large-scale neural signals (Section IV-A). Then we go through
the HDC classifier with adaptive model update (Section IV-B).

A. HDC Encoder for Neural Activity Recordings

1) Challenges in Existing HDC Neural Signal Encoding:
Current HDC encoding methods have multiple limitations in-
cluding quantization loss and the lack of non-linearity. Recent
HDC encoding methods designed for bio-signals like EEG and
EMG [11], [29] only focus on bipolar hypervectors (i.e., the
element being either +1 or −1), which lack the capacity to
capture complex patterns. For example, encoding real-value
inputs is challenging because the encoder needs to first quantize
them to a finite number of levels. This step already brings noise
to the learning process and thus quality loss. The most significant
drawback, however, is that bipolar hypervectors with bundling
and binding (as we introduced in Section III) fail to consider
correlations between inputs and also within each input vector.

The task defined in this paper utilizes large-scale neural
recordings that are rich in both temporal and channel-wise
patterns. In terms of the time-series length for each sample,

Fig. 2. Overview of the Kernel-based HDC Encoding composed of an
encoding matrix, bias hypervector, and activation function; it maps inputs
from original space to hyperspace.

the IC neural recordings in our task are significantly longer
than previous workloads in [11], [12]. In addition, our MUA
neural recordings have 100 channels, which is much higher
compared with other healthcare tasks. For example, ECG sensors
for arrhythmia monitoring and emotion detection tasks only have
2 channels [30], [31].

Existing HDC-based solutions [11], [12] heavily rely on
aggressive downsampling to reduce the length of the bio-signal
samples because large-scale inputs are not well-supported. Even
after downsampling, they only focus on smaller clips within the
long time series for classification, which limits the ability to
extract global patterns. The extensive use of permutation for
maintaining temporal sequence also adds significant learning
overhead when the task scales.

2) Kernel-Based Non-Linear Encoding: As a solution to
these problems, we utilize a kernel-based HDC encoding method
with non-linearity [32]. It gets inspired by the Radial Basis Func-

tion, i.e., RBF kernel, which is defined as K(x,y) = e
−||x−y||2

2σ2 ,
wherex,y ∈ Rn andσ is the length scale parameter. In addition,
prior works propose the kernel trick [33], [34] that approximates
shift-invariant kernels like the RBF kernel using dot-products
of another mapping z: K(x,y) = 〈Φ(x),Φ(y)〉 ≈ z(x) · z(y),
where Φ is the implicit mapping corresponding to the RBF
kernel. A suitable and high-dimensional mapping z will lead
to dot products that converge to the target kernel function in
expectation.

We leverage this trick and construct an HDC encoder by defin-
ing a high-dimensional mapping Z(x), following the results
presented in [33]:

Hypervector �X = Z(x) = cos(Hx+ b) ∗ sin(Hx)

As shown in Fig. 2, for input features of size n, H is a D ×
n matrix with its elements randomly sampled from Gaussian
distribution N (0, 1) and b ∈ RD is a bias term generated using
U(0, 2π). Therefore, this encoder will map inputs x ∈ Rn to
hypervectors with a significantly larger dimensionalityD (D �
n).

The connection shown between HDC and kernels has more
profound meanings. A kernel-based HDC encoder has multiple
advantages, with the most immediate one being avoiding the
quantization loss during encoding. Notice that the encoding
matrix H maps the input directly to hypervector space with-
out the need to discretize inputs and generate so-called ’Level
Hypervectors’. The second benefit is that, by introducing kernels
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Fig. 3. Spatial and temporal-aware HDC encoding for IC neural activity recordings: (a) Use a sliding window to cover a long time series, (b) within
the same window, concatenate values from all channels, (c) bundle encoded hypervectors of different window to create the final representation.

to HDC, encoded hypervectors retain a good space similarity. In
other words, the similarity between two hypervectors approx-
imates the corresponding kernel value, which is shift-invariant
and only depends on the distance in the original space. The third
benefit comes from the RBF kernel itself. As a universal ker-
nel [35], the RBF kernel guarantees an optimal approximation
to arbitrary bounded and continuous functions.

3) Spatial and Temporal-Aware Encoding: The previous
section defines a good HDC encoding method, however, it is not
yet suitable for large-scale neural activities encoding. To bridge
this final gap, we need to consider both spatial and temporal
information during HDC encoding.

For illustration, we use a single IC recording that corresponds
to a consonant-vowel pair, as shown in Fig. 3. Recall Section II,
each neural activities recording contains 100 channels, and the
length is 188. One naive way to handle this 2D input in prior
HDC solutions is to flatten it as a 1D vector with 18800 elements,
similar to traditional ML algorithms such as MLP and SVM.
Although direct flattening to 1D is compatible with the HDC
kernel-based encoder, it comes at a cost. In neural activity
analysis, the biggest difficulty is that the locations of key patterns
shift from sample to sample and they may reside in multiple
smaller clips. Therefore, if the encoding process considers the
whole flattened input, HDC loses the ability to detect the shift
of patterns. In the case of phoneme recognition, the onset of
consonants may shift due to different speakers and vowels.

To address this problem, before encoding, we process the neu-
ral activity recording through a series of overlapping windows.
In Fig. 3 a©, we use multiple sliding windows to effectively cover
the whole recording. For simplicity, the window size is set to 3 in
the figure and we only show the first and the last channel. We
also assume a step size of d andN overlapping windows. In each
channel, a window includes 3 neural activity values {Y1, Y2, Y3}
that correspond to the time points {t1, t2, t3}. To encode these
values with temporal information, we maintain the order of
inputs before mapping to hypervectors. As shown in Fig. 3 b©,
for each window, we select values in the first channel in the order
of time and then continue with the next channel. This results in
a longer vector of 300 elements since there are 100 channels in
each neural signal recording. This sorting makes sure that the
encoder is aware of the temporal and spatial location of each
element. The sorted vector for each window (i.e., N vectors in
total) is then ready for encoding with our kernel-based encoder.

Fig. 4. HDC inference and adaptive model update that are based on
lightweight hypervector similarity check.

In Fig. 3 c©, we use the bundling operation to combine encoded
hypervectors for different sampling windows and obtain the final
output as a single hypervector. Bundling ensures that the output
hypervector contains information from every window.

By encoding inputs using multiple overlapping windows, our
encoder can effectively capture shifted patterns due to speaker
and phoneme variations. Suppose that one neural activity pattern
that showed up in training is delayed in testing samples. Our
encoder ensures that they remain similar because these encoded
hypervectors contain a large number of similar terms during the
bundling of sliding windows.

Finally, our encoder design also has an efficiency benefit.
Specifically, our encoder is free of permutation operation, which
is inefficient on CPU platforms, not to mention low-power
devices. In our encoder, we preserve the temporal and spatial
order before mapping to hyperdimensional space and thus, the
computation overhead is low. On the other hand, prior works
require thousands of permutation operations to mark temporal
information for the whole time-series.

B. HDC Classifier With Adaptive Model Update

HDC learning, compared with widely adopted DNN, has
higher efficiency and faster model training. The reason is that
HDC learning directly operates over encoded hypervectors.
Although the dimensionality is higher than usual, the HDC
operations are lightweight and easy to parallelize. As shown
in Fig. 4, the learning process is free of high-cost computations
such as backpropagation. For both HDC training and testing
phases, the input neural activity is first mapped to a single
encoded hypervector �H using the encoder design we introduced
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in Section IV-A. In inference, we check the cosine similarity
between the encoded query hypervector �H and every class
hypervector �Ck with: δ( �H, �Ck) = �H · �Ck/(| �H||�Ck|) The model
predicts the label of this query as argmaxk(δ( �H, �Ck)). The
HDC training process, thanks to the memorization capability
of HDC, can be as simple as bundling hypervectors of the same
class [9]. However, the major drawback of naive hypervector
accumulation is that class hypervectors are quickly saturated
by common patterns, while a few of the training samples with
uncommon patterns are not well-learned by the model.

In this paper, we apply the adaptive model update during
the HDC training. In Fig. 4, we show that the update is now
adaptive based on the similarity to each class hypervector. For
example, if the pattern is already memorized quite well in the
hypervector, i.e., similar samples are met before, the update of
the class hypervector should be minimal to avoid hypervector
saturation. On the other hand, if the pattern does not exist in
the correct class hypervector, then the update should be slightly
more aggressive. Therefore, a large number of common patterns
will no longer dominate the class, and uncommon patterns will
still be effectively learned by the model.

In detail, we define the similarity-based adaptive learning rate
ηδ. For an input with label k, and if the HDC model predicts
incorrectly to class k′, we need to update model hypervectors
for both classes. To begin with, the update procedure for the
class hypervector �Ck is:

�Ck = �Ck + ηδ × �H = �Ck + η × (1− δk)× �H
where η is a base learning rate and δk is short for the similarity
δ( �H, �Ck). δk indicates to what extent the input pattern already
exists in �Ck. Since the maximum value of cosine similarity is 1,
the adaptive learning rate η × (1− δk) limits the added patterns
to eliminate model saturation. As for the class hypervector �Ck′ :

�Ck′ = �Ck′ + ηδ × �H = �Ck′ + η × (δk′ − δk)× �H
where δk′ − δk represents to what extent the model should be
updated. In the case when δk′ − δk � 0, it shows that a large
mismatch happens and the corresponding learning rate should
be larger. Meanwhile, a smaller value means that only a slight
update is needed for the correct classification. This training
process is also iterative, where the HDC model becomes more
accurate after multiple epochs of training.

C. FPGA Accelerator Design

For better efficiency in real-world applications, HDC-based
algorithms can be accelerated on various hardware platforms.
In this paper, we focus on the FPGA as HDC models are
well-suited for customized domain-specific accelerators. HDC
models are characterized by natural computing parallelism and
low element precision which has been shown in many previous
study [10], [36], [37], [38]. In contrast, CPUs and GPUs are not
ideal for accelerating HDC models [36]. CPUs lack sufficient
computing parallelism, while GPUs incur high data communi-
cation overhead between the CPU and GPU. Additionally, GPUs
have relatively high power consumption due to their support for
high-precision floating-point operations.

Fig. 5. Data offloading scheduling on CPU side: (1) Process the raw
data with sliding window on CPU, (2) data batches are then offloaded
onto FPGA.

In particular, we designed a CPU-FPGA heterogeneous ac-
celeration framework. In Fig. 5, we present the data offloading
scheduling process on the CPU side. Here we suppose the batch
size is B, the time series length is NT , the total number of
channels is Nc, and the sliding window size is W . By covering
the whole time series with overlapping windows (Fig. 5 1©), we
will generate total Nw data windows at the CPU side. Suppose
the sliding window step size is Δ, The size of Nw is gonna be:

Nw =

⌊
NT −W

Δ

⌋
+ 1

The shape of each data window is B ×W ×Nc. The host
program will offload one data window into the kernel FPGA
accelerator (Fig. 5 2©) during both training and inference stages.
The communication interface between the host CPU and kernel
FPGA is PCIe [39].

In Fig. 6(a) we present the FPGA kernel architecture design.
The host CPU will offload the input data into the kernel FPGA
via PCIe link and Xilinx AXI Direct Memory Access (DMA) IP
(Fig. 6 1©). To maximize the FPGA on-chip resource utilization
rate, we conduct two-dimensional data partitioning. This means
that we partition both input data and HDC encoder during hyper-
vector encoding and similarity search. Specifically at Fig. 6 2©,
we reshape each input data from the original channel size (Nc)
into chunk size T . The reason here is that a large systolic
array leads to synthesis and routing challenges, considering the
limited resources and area of FPGA [40]. Instead, as is shown
in Fig. 6(b), we choose to deploy multiple smaller-sized systolic
array IPs such that the total PEs are the same. Our main goal is to
maximize the speedup by maximizing the data computing paral-
lelism. Therefore, we design specific datapaths and re-architect
the dataflow, such that our design can process as many data
channels as possible on limited on-chip processing elements.
Each systolic array IPs have multiple computing unit (CU) IP.
In Fig. 6(c), we present the micro-architecture design of CU IP.
Our design is an output-stationary systolic array; inputs to each
CU will be passed to other neighboring CUs downstream; and
the register in each CU accumulates the multiplication results
and outputs the final value (i.e., output stays in each CU). We
use a first in first out (FIFO) buffer to store each chunk of input
data (Fig. 6 3©). Here we use Yi to represent the ith input data
chunks. The dimension of each buffer-stored input data chunk
is B × T and there are total S entries inside the buffer. The size
of S is:

S =
Nc ×W

T
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Fig. 6. (a) An overview of our proposed FPGA acceleration framework for HDC-based phoneme recognition. (b) Processing Elements (PE) IP
architecture: 4 small systolic array computing in parallel for hypervector operations. (c) Systolic array computing unit (CU) IP microarchitecture.
(d) Kernel function IP architecture for efficient computation of trigonometric functions.

We leverage Processing Elements (PEs) IP to accelerate the
matrix-to-matrix multiplication (M2MM) which is the founda-
tion of hypervector operation. For base hypervector and input
data multiplication acceleration, we load the input data window
from the FIFO buffer (Fig. 6 4©)) into PEs (Fig. 6 6©) and for
HDC similarity search, we load the encoded hypervector from
on-chip storage into the PEs IP via Xilinx AXI Interconnect IP.
Notice that depending on the type of FPGA board, the on-chip
storage could be either DRAM or high bandwidth memory
(HBM). The latter one provides faster data movement thanks
to its multiple parallel channels that form high bandwidth. We
include a multiplexer IP controlled by the CPU input signal
(Fig. 6 5©) to decide the data path that PEs IP takes. The input data
of PEs IP could be either unencoded raw input data or encoded
hypervector. We also pre-store HDC encoder hypervectors and
class hypervectors inside on-chip storage (Fig. 6 7©). As we
mentioned above, to decrease FPGA synthesis difficulty, we
choose to implement multiple small-sized systolic arrays IP
inside the PEs IP. Each small size systolic array IP’s dimension
is B ×D0 where B is the training and inference batch size and
D0 is the hypervector chunks size [41]. This means each systolic
array has B ×D0 computing unit (CU) IP. Each small systolic
array IP’s output vectors will be concatenated together.

After the M2MM acceleration, the output vectors will be
passed into the activation kernel function IP during the encoding
stage (Fig. 6 8©) or stored back into on-chip storage during the
similarity search stage (Fig. 6 9©). To save the on-chip resource
usage (especially for DSP usage), we choose to use on-chip
memory (such as BRAM) as codebook triangular function ta-
ble [10], [42], [43]. As is shown in Fig. 6(c), we treat each hyper-
vector element (fixed-point number) as the input address. Then
we pre-store all possible trigonometric function results inside
on-chip memory such as BRAM. Notice that for trigonometric
functions (such as sine and cosine), valid inputs range from −π
to π, and thus we don’t need to use the full data precision as the
input address. Instead, we quantize the hypervector elements
into −π to π and only use valid bits as input address.

After the kernel function IP (Fig. 6 10©), we store the encoded
hypervector into the on-chip storage (Fig. 6 12©) via Xilinx AXI
Interconnect IP (Fig. 6 11©). During the HDC model training, we
only perform encoding operation once and reuse pre-encoded
hypervector to train the class hypervectors [44]. This customized

datapath design significantly reduces unnecessary encoding
computation and CPU-FPGA communication overhead. During
the inference, we will pass prediction results back to the host
CPU (Fig. 6 13©) via Xilinx AXI DMA IP.

V. EXPERIMENTAL RESULT

A. Experiment Settings

We evaluate our proposed HDC-based neural activity learning
framework on a diversity of hardware platforms, including AMD
Ryzen 5 3600X CPU, NVIDIA RTX 3070 GPU, Jetson Orin
embedded GPU, and Xilinx Alveo U50 FPGA. Jetson Orin
has been widely applied to applications such as robotics and
self-driving, where power consumption needs to be minimized.
Xilinx Alveo U50 is also a low-power FPGA targeting embedded
usage. Using these four platforms, we try to cover a broader
range of hardware environments for real-world deployments. On
CPU and GPU platforms, we utilize Pytorch for implementing
our algorithm; and we use Vitis for the deployment on FPGA.
As mentioned in the task introduction (Section II), the dataset
we focus on has six different configurations, i.e., 3 noise settings
* 2 speech intensity levels. In the following sections, we provide
accuracy and runtime results for these datasets with different tar-
get tasks, including consonant classification and vowel classifi-
cation. For these two classification tasks, by default, we only use
neural activities that are related to either consonants or vowels.
That is, for consonant classification, we zero-mask most of the
neural responses for vowel sounds, and vice-versa. The coarse
boundary between vowels and consonants is identified during
the collection of the dataset, which is visible on recordings.
However, we also try to classify using non-masked inputs, and
the results are shown in Section V-F.

Unless otherwise specified, we generate the training and test-
ing datasets using a ‘speaker-dependent’ fashion with the 80-20
split. In other words, the split happens within 130 vowel-speaker
pairs for the consonant classification and 220 consonant-speaker
pairs for the vowel classification. It is speaker-dependent be-
cause the speech utterances of a certain speaker may show up
in both training and testing samples, although with different
vowels or consonants. In Section V-D, we also consider the
‘speaker-independent’ situation, which is intuitively harder due
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Fig. 7. Consonant classification accuracy comparison between our HDC-based algorithm and four baselines. The accuracy results are reported
across six datasets of different noise and speech intensity conditions (in (a) we use a speech intensity of 60 dB SPL, and (b) has an intensity of
85 dB SPL). In this figure and the rest, we use ‘S_Net’ as short for SqueezeNet and ’R_Net’ for ResNet.

TABLE I
THE RESOURCE UTILIZATION OF HDC MODEL ACCELERATION ON XILINX
ALVEO U50. HERE FPGA KERNEL FREQUENCY IS 200 MHZ AND THE

POWER CONSUMPTION IS 23 W

to the shift of sample distribution between training and testing
datasets.

To illustrate the advantage of using HDC in this task, we
compare its results with other ML algorithms in terms of learning
efficiency and classification accuracy. We select four different
ML algorithms that range from conventional ones to state-of-the-
art. The first one is a simple MLP with two hidden layers (each
has 512 and 128 neurons). The second one is SVM with RBF
kernel which is frequently used in bio-signal classification tasks.
In experiments, the multi-channel neural activity is flattened
before learning with MLP and SVM. The last two are deep
CNNs. In our experiments, we choose SqueezeNet [45] and
Resnet18 [46]. Both networks are loaded directly from Py-
Torch and trained from scratch. Specifically, we use SqueezeNet
version 1_1 which aims at lower computation cost without
sacrificing the quality. We collect GPU results for CNNs and
HDC using PyTorch and the ones for SVM through Thunder-
SVM [47]. We accelerate the HDC model on Xilinx Alveo U50
based on previous HDC accelerator design [10]. In Table I, we
present the resource utilization of our HDC acceleration. LUT
is short for look-up table, FF is Flip-Flop, DSP stands for digital
signal processing unit, BRAM means block RAM that supports
memory-intensive operations, and URAM is ultra RAM with
larger capacity and optimized for high bandwidth. We also report
other model’s performance (SVM, MLP, S_Net, and R_Net) on
Alveo U50 based on previous works [48], [49]. The training
runtime reported in this section follows the iterative learning
setting, both MLP and CNNs are fully trained with 100 epochs,
and 150 epochs for HDC. In Section IV-A, we show that our
HDC-based algorithm has three hyperparameters including the
dimensionality D, the window size, and the step size between
neighboring windows. As for the default settings in the following

experiments, we set the window size to 40, the step size to 5,
and D = 10000.

B. Consonant Classification Accuracy & Efficiency
Comparison

In this section, we present the results of our HDC-based
framework solving the consonant classification on all six
datasets, i.e., with different noise and speech intensity set-
tings. Our experimental results show that the HDC-based al-
gorithm achieves better or comparable results, compared to the
best-performing baseline algorithms, i.e., ResNet. As shown
in Fig. 7(a), when the speech intensity is set to 60 dB SPL,
HDC obtains nearly 60% accuracy. On the other hand, MLP and
SqueezeNet do not perform well in these datasets. In Fig. 7(b),
we provide results for datasets with 85 dB SPL speech intensity,
where the accuracy of HDC is still comparable to ResNet and
outperforms other baseline algorithms. By comparing the results
of 60 dB SPL and 85 dB SPL, we notice an interesting phe-
nomenon: the classification accuracy decreases while the speech
intensity increases across all noise conditions and algorithms.
This may be due to the saturation of IC neurons since their
firing rates have an upper limit. The high-intensity sound (85 dB
SPL) caused more neurons to fire at their maximum rate which
makes the IC firing pattern less differentiable. For the rest of the
experimental results, we only focus on datasets of 60 dB SPL
due to the limited space and similar performance trend in 85 dB
SPL datasets. In addition, the normal human voice intensity is
about 60 dB SPL.

We also compare the total training runtime for all five classifi-
cation algorithms on CPU, GPU, and FPGA platforms. Results
reported here are averaged across different dataset configura-
tions, although the runtime for each is very similar. In Fig. 8(a),
we observe that HDC requires significantly shorter training
time on the CPU, compared to all four baseline algorithms.
Specifically, our HDC-based classification framework requires
only about 550 seconds, i.e., around 74× faster than ResNet.
In Fig. 8(b) and (c), we report the runtime collected on the
embedded Jetson GPU and more powerful RTX 3070. The
speedup brought by HDC is about 62× and 67× respectively,
compared to ResNet running on the same hardware. In addition,
we find that the HDC training time on the CPU is still signifi-
cantly faster, even compared with the GPU runtime of CNN and

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 27,2024 at 01:52:31 UTC from IEEE Xplore.  Restrictions apply. 



3106 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 11, NOVEMBER 2024

Fig. 8. Consonant classification efficiency comparison between our HDC-based algorithm and four baselines with deployments on 4 different
hardware platforms: (a) CPU, (b) an embedded GPU-NVIDIA Jetson Orin, (c) a desktop GPU-NVIDIA RTX 3070, (d) Alveo U50 FPGA.

SVM algorithms. Fig. 8(d) presents the learning runtime of each
algorithm on the Alveo U50.

Due to the great design flexibility, FPGA is able to fur-
ther accelerate all five algorithms with faster learning runtime.
However, our algorithm based on HDC benefits more from the
customizable features of FPGA and shows a significant 210×
speedup compared to ResNet. The learning runtime is reduced
from more than 18 minutes to just 5 seconds. HDC models with
natural computing parallelism and holographic representation
with better tolerance against low element precision, show more
benefits during FPGA acceleration. With our architecture design
introduced in Section IV-C, HDC-based algorithms achieve
higher computation parallelism and more efficient usage of
limited resources than all other baseline algorithms. As shown
in Table I, the hypervector computation exploits FPGA Look-up
tables (LUTs) that are significantly more efficient than Digital
Signal Processors (DSPs). In addition, by customizing the com-
putation datapath, we can reuse previous computation results
and pipeline the encoding and classification operations.

Therefore, our proposed HDC-based solution is a highly
efficient and more effective algorithm compared to CNN/SVM
when learning noisy neural activity data. In this paper, we mainly
illustrate two advantages of HDC-based algorithms including
better classification quality and higher training efficiency. As
shown in Table I, the average inference runtime of HDC on
FPGA is 0.26 seconds, about 5× faster than ResNet (1.3 sec-
onds). However, this is negligible when compared to the learning
runtime and thus we will only focus on training in the rest of the
sections.

C. Hyper-Parameter Tuning

In this section, we explore the effect of varying two HDC
hyperparameters on CPU training time and consonant classifi-
cation accuracy, including the window size and the step size.
Based on the results, we select the default setting for these
two hyperparameters. In Fig. 9(a), we vary the window size
from 20 to 70. When the window size increases, although the
total number of overlapping windows decreases due to the fixed
step size and length of neural recordings, the input size of the
HDC encoder increases; and this leads to the training runtime
trend shown in this figure. Compared to the baseline ResNet
accuracy, HDC achieves better or at least comparable accuracy.
We select 40 as our default window size setting for its lower

Fig. 9. HDC consonant classification performance with different win-
dow sizes and step sizes. The results shown are for the 60 dB SPL
clean neural activity dataset. In (a), the step size is 5; in (b), the window
size is 40; the dimensionality is 10 k for both.

training time and satisfying accuracy. Then we fix the window
size at 40 and explore the effect of step size on learning quality
and efficiency. In Fig. 9(b), we change the step size from 1 to
6 and observe that both the training runtime and classification
accuracy increase when the step size decreases. When the step
size is smaller or equal to 5, the classification accuracy of HDC is
higher than ResNet. Therefore, we choose 5 as the default step
size for a shorter training runtime. Notice that the consonant
classification accuracy of HDC is able to achieve nearly 64%
with a training runtime of fewer than 3000 seconds on CPU.
The maximum HDC accuracy shown here is significantly higher
than all baseline algorithms, yet it is still much faster than CNN
and SVM.

D. Speaker Independent Consonant Classification

With the default speaker-dependent setting (recall Sec-
tion V-A), the split of the training and testing datasets only
considers separating different pairs of speakers and vowels for
consonant classification. That is, speech from the same speaker
can show up in both training and testing datasets. In this section,
we generate datasets that follow the speaker-independent setting.
In other words, we will randomly select two out of ten speakers
and use the neural recordings corresponding to their speech as
the testing dataset. The rest eight speakers will count toward the
training dataset. This leads to a significant train-test gap and thus
becomes more challenging for all machine learning algorithms.

In Table II, we present the consonant classification results
and the training runtime for different algorithms and hardware
platforms. Our HDC-based algorithm outperforms all baselines
in both accuracy and learning efficiency. For example, compared
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TABLE II
CONSONANT CLASSIFICATION PERFORMANCE COMPARISON UNDER THE SPEAKER-INDEPENDENT SETTING ACROSS ALL 60 DB SPL DATASETS

Fig. 10. Vowel classification training runtime comparison with different baseline algorithms and across hardware platforms: experiments are
carried out on datasets with three different noise conditions; HDC-based algorithm constantly achieves better efficiency.

Fig. 11. Vowel classification accuracy comparison across different noise conditions: for all three settings (Clean, Noisy_1, and Noisy_2), HDC-
based algorithm constantly outperform the rest with up to 14% improvements.

to SVM (ResNet), results for the clean dataset show that HDC
achieves about 4% (15%) higher accuracy; in terms of runtime,
HDC is about 42× (70×) faster on RTX 3070 GPU; as for FPGA,
the speedup is 117× (213×). To conclude, the fact that HDC
obtains higher accuracy shows that it may generalize better than
other baselines in the case of dataset shift.

E. Vowel Classification Accuracy & Performance
Comparison

In this section, we focus on vowel classification using IC
neural recordings. We test different algorithms on 60 dB SPL
datasets of three different noise conditions. In Fig. 10, we
present the learning runtime comparison. We run a simple
HDC hyperparameter tuning similar to the one described in
Section V-C and set the step size to 2 and the window size to
80. Across all hardware platforms, the HDC-based algorithm
achieves significantly faster training than baselines such as
SqueezeNet, ResNet, and SVM. For example, compared to the
best-performing SqueezeNet that is efficiency-orientated, our

HDC provides significantly higher classification accuracy and
is on average 35× faster in training on FPGA.

In Fig. 11, we observe that our proposed HDC algorithm
achieves the highest accuracy as well as the lowest learning
runtime in all three datasets and across different hardware
platforms. HDC-based method provides an average accuracy
improvement of 9.7%, 12.3%, and 6% compared to ResNet,
SVM, and SqueezeNet, respectively. One finding to note is that,
across all algorithms, the vowel classification accuracy is lower
than the one for consonant classification, even though there are
fewer vowels than consonants. This is due to the larger variability
of vowel pronunciations across different speakers and different
words than consonant pronunciations [50].

F. Classification on Non-Masked Datasets

For the previous sections, we utilize the available datasets
with either consonant or vowel masked. However, we also
test different algorithms using datasets without masks, and we
present both consonant and vowel classification results using the
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Fig. 12. Training runtime of learning on non-masked IC neural activities for: (a) Consonant classification runtime and (b) vowel classification
runtime, where the unrelated information (e.g., vowel part during consonant classification) are not masked.

Fig. 13. Accuracy of learning on non-masked IC neural activities for: (a) Consonant classification accuracy and (b) vowel classification accuracy.
Our proposed HDC-based algorithm notably improves the accuracy on vowel classification and is comparable to the best baseline in consonant
classification.

60 dB SPL clean dataset. As shown in Figs. 12(a) and 13(a), our
HDC-based algorithm achieves comparable accuracy compared
to ResNet with far less training cost, which makes it significantly
outperform other baseline algorithms in consonant classifica-
tion. In Figs. 12(b) and 13(b), HDC again shows advantages
in both accuracy and efficiency. It should be highlighted that
our method, when facing non-masked neural activities, achieves
notable improvements in vowel classification compared to other
baselines, e.g., 10%, 13%, and 6% compared to ResNet, SVM,
and SqueezeNet, respectively.

VI. RELATED WORKS

Phoneme Classification on Neural Signals: Mesgarani et
al. [15] conducted one of the earliest studies on classifying
phonemes based on neural activities. In this study, ECoG record-
ing of ferrets’ auditory cortex was used for the phoneme clas-
sification task. The linear SVM was chosen as the classifier
which achieved up to 37% accuracy for a 14-class consonant
classification task. Wang et al. [14] used EEG recordings from
four human subjects to perform both consonant and vowel
classification tasks. SVM based on multiple sets of manually
selected features was used to perform the classification task.
The best test accuracy for the 8-class consonant classification
task was 66.7% and the best test accuracy for the 4-class vowel
classification task was 48.7%. In a recent study [16] aiming to
classify the whole set of phonemes in the English language using
EEG recordings, the authors achieved the best test accuracy

of 36.1% for 24-class consonant classification. A study done
by Armstrong et al. [18] used MUA from gerbils to perform a
12-class consonant classification task, which obtained the best
accuracy of 53%. However, these prior works are relatively
limited either in task scale, baseline algorithms, or learning
accuracy. In this paper, we propose an HDC-based learning
framework that supports large-scale neural activity datasets,
achieves high learning quality, and is compared to much stronger
baselines.

Hyperdimensional Computing: Prior works have applied
HDC brain-like memorization and association functionalities
to diverse applications, for example, outlier detection [51],
speech recognition [10], and gesture classification [12]. Apart
from classification learning tasks, it has also been applied to
genomic matching [52], regression [53], reinforcement learn-
ing [54], and graph reasoning [55], [56]. Particularly, several
recent works also propose to leverage HDC for bio-signals (e.g.,
EEG and EMG signals) processing, including brain-computer
interfaces, emotion detection, activity recognition, and gesture
detection [12], [30], [57]. Previous HDC works provide com-
parable accuracy to existing machine learning models while
reducing the learning runtime cost. However, they face various
challenges when learning on noisy and high-dimensional neural
activities.

Hardware Acceleration of Hyperdimensional Computing:
Work [41] focuses on accelerating HDC-based regression al-
gorithm on FPGA and work [42] is mainly about accelerat-
ing HDC-based Reinforcement Learning (RL) algorithm and
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work [10] focuses on HDC classification model for much simpler
datasets, including handwritten digits recognition and human
activity recognition (based on preprocessed and extracted fea-
tures). In addition, work [10] focuses on HDC model quanti-
zation and puts little emphasis on FPGA on-chip computing
IP design. Our design is not only very different from previ-
ous designs in terms of targeted applications but also unique
architecture-wise.

Architecutrue-wise, work [10] uses a naive design to paral-
lelize the dot-product computation. It proposes to do element-
wise multiplication across all channels and applies an adder tree
to accumulate partial results. However, this particular design
does not scale well and fails to support biosignals with a large
number of channels. Work [10] and work [42] targets RL and
regression, where inputs are very small vectors, e.g., inputs are
vectors of 4 features for the CartPole RL task. Therefore they
select a single large systolic array for computation. In addition,
in both RL and regression, the output logit is only a single value,
and thus the parallelization there is very straightforward and not
optimal for our application.

VII. CONCLUSION

This paper proposes a hyperdimensional learning framework
for large-scale neural activity processing. For the first time,
we utilize a brain-inspired algorithm for learning on IC neural
recordings and perform phoneme recognition with high learning
quality and efficiency. Prior HDC-based algorithms only han-
dled neural activities with limited temporal and spatial scales.
Learning on large-scale neural activities is non-trivial for these
prior methods. On the other hand, our proposed method includes
a spatial and temporal-aware HDC encoder that effectively
captures global and local patterns without aggressive prepro-
cessing. We carry out extensive experiments across different
hardware platforms and show that our design achieves up to
210× speedup against the baseline. In addition, our HDC-based
algorithm shows notable benefits over baselines in terms of
vowel classification, learning on non-masked neural activity, and
learning with the speaker-independent setting.
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