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Abstract

Human pose estimation (HPE) is crucial for various ap-
plications . However, deploying HPE algorithms in surveil-
lance contexts raises significant privacy concerns due to the
potential leakage of sensitive personal information (SPI)
such as facial features, and ethnicity. Existing privacy-
enhancing methods often compromise either privacy or per-
formance, or they require costly additional modalities. We
propose a novel privacy-enhancing system that generates
privacy-enhanced portraits while maintaining high HPE
performance. Our key innovations include the reversible
recovery of SPI for authorized personnel and the preser-
vation of contextual information. By jointly optimizing a
privacy-enhancing module, a privacy recovery module, and
a pose estimator, our system ensures robust privacy pro-
tection, efficient SPI recovery, and high-performance HPE.
Experimental results demonstrate the system’s robust per-
formance in privacy enhancement, SPI recovery, and HPE.

1. Introduction

With the progression of computer vision, human pose
estimation (HPE) has become a crucial and fundamental is-
sue, attracting considerable scholarly attention. As a pivotal
element of human-centric visual understanding, HPE estab-
lishes the groundwork for numerous advanced computer vi-
sion tasks, such as human action recognition [62], human
parsing [53], motion prediction and retargeting [35, 40].
Consequently, it underpins a broad collection of applica-
tions, including human behavior analysis [58], violence de-
tection [21], crowd riot scene identification [72], and au-
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Figure 1. Motivation for our privacy-enhancing system. (a). Con-
ventional surveillance systems are susceptible to leaks of SPI,
which can be exploited for illicit surveillance and criminal activ-
ities. (b). Our system not only safeguards SPI against informa-
tion misuse but also supports HPE. The privacy-enhanced images
retain functionality for routine monitoring, while SPI remains re-
coverable by authorized personnel.

tonomous driving [68].
Due to the extensive computation involved in the appli-

cations above, users typically resort to cloud services for
data processing and machine learning [25,73,74,78]. How-
ever, when data is transmitted to cloud servers, sensitive
personal information (SPI) such as facial features, gender,
and ethnicity is inevitably shared. Privacy issues are partic-
ularly pronounced in surveillance contexts where HPE algo-
rithms are widely deployed, as illustrated in Fig. 1(a). Ubiq-
uitous surveillance systems collect and share vast amounts
of data. While this data is valuable for legitimate users in
various scenarios, such as routine monitoring, and crime
investigations, it simultaneously raises significant privacy
concerns for individuals and public safety. Without care-
ful protection measures, SPI in raw data could be leaked
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and misused by malicious parties for harmful purposes. For
instance, attackers might recognize individuals and surveil
them for further criminal activities or even forge their iden-
tities [9]. Additionally, the leakage of SPI can introduce
bias and compromise the fairness of analyses and judicial
processes [17].

In response to data misuse, various legal regulations
have been introduced [6, 15], and researchers are develop-
ing more advanced algorithms to consider personal privacy.
For privacy enhancement in computer vision applications, a
straightforward solution is to use very low-resolution data
[39, 54]. Although these methods do not require special-
ized training to remove privacy features, they often fail to
balance privacy enhancement and model performance effec-
tively. Some approaches [3,8,57] employ additional modal-
ities to enhance privacy. However, the need to install sen-
sors for these extra modalities increases the cost of surveil-
lance systems, impeding their widespread deployment. An-
other set of methods involves modifying images with hand-
crafted features such as blurring, adding noise, and pixe-
lation [1, 10, 47]. Unfortunately, these techniques demand
extensive domain knowledge, which may not be practical in
real-world applications.

Recent privacy-enhancing systems adopt data-driven ap-
proaches that conceal SPI from various perspectives. For
instance, Hukkelås et al. [30] propose a framework using
a generative adversarial network (GAN) for full-body syn-
thesis. Their approach generates new representations of in-
dividuals that effectively obscure SPI while preserving es-
sential pose information. In another approach, Hinojosa et
al. [24] introduces a hardware/software co-design frame-
work. This framework optimizes both the point spread
function of the camera lens and the neural network archi-
tecture, enabling the development of domain-specific com-
putational cameras tailored for privacy-enhancing purposes.
Furthermore, Dave et al. [16] present a training framework
that autonomously removes SPI in a self-supervised man-
ner, alleviating the need for extensive manual labeling ef-
forts. Kansal et al. [34] propose a novel dual-stage frame-
work that suppresses SPI from the discriminative features,
and introduces a controllable privacy mechanism through
differential privacy.

However, most of the previous work does not target HPE.
Besides, all the aforementioned methods exhibit shortcom-
ings in one or more of the following aspects:
(1). Recovery of Removed SPI: Privacy-enhanced images
should allow authorized users to recover SPI when neces-
sary. While SPI may not be essential for scientific research
or routine monitoring, it remains critical for specific appli-
cations. To ensure data utility for various users, authorized
personnel such as law enforcement officials should be able
to recover original raw images from privacy-enhanced ver-
sions, particularly for investigative purposes.

(2). Preservation of Context: Effective privacy-enhancing
systems should modify only the region of interest (e.g., hu-
mans) while preserving the background unchanged. Con-
textual information is crucial as the interpretation of ac-
tions can vary significantly depending on the surroundings
[11, 19, 23, 76]. For instance, distinguishing between some-
one jogging in a park and someone fleeing a store after theft
requires intact contextual clues. Therefore, the context in-
formation should be preserved after privacy enhancement,
to aid correct interpretation.
(3). Lightweight Deployment: Privacy-enhancing systems
need to be lightweight for deployment near cameras. Trans-
mitting data to cloud servers poses security risks such as in-
terception and tampering during transmission [18, 55]. De-
ploying privacy-enhancing systems near cameras reduces
these vulnerabilities by processing raw images locally be-
fore transmission [26,27,75]. Therefore, such systems must
operate efficiently in real-time, considering limited compu-
tational resources and power constraints.

By addressing the limitations observed in previous work,
we propose a privacy-enhancing system capable of gener-
ating privacy-enhanced portraits of individuals in images
with minimal impact on HPE, as depicted in Fig. 1(b). The
privacy-enhancing module operates near the camera, pro-
cessing raw images before transmission. This approach en-
sures that SPI in the privacy-enhanced images remains con-
cealed from potential attackers, yet remains usable for HPE
tasks and recoverable by authorized users through a privacy
recovery module. Our approach begins by desensitizing raw
images using conventional methods such as blurring, pixe-
lation, or noise addition. These desensitized images serve
as initial supervised inputs for the privacy-enhancing mod-
ule, which then modifies original images to create privacy-
enhanced versions in a trainable manner. To ensure the
preservation of essential features for recovery and HPE, we
optimize the privacy-enhancing process in conjunction with
a privacy recovery model and a pose estimator. Through
supervised and joint learning, our system achieves effective
privacy protection, robust recovery capabilities, and main-
tains high performance in HPE tasks. The key contributions
of this work are outlined as follows:

• To the best of our knowledge, we are the first to discuss
reversibility, privacy recovery, and context preservation
in privacy enhancement for HPE. We introduce a novel
privacy-enhancing system designed to generate privacy-
enhanced portraits of individuals in images, specifically
adapted for downstream machine learning tasks such as
HPE.

• We proposed an end-to-end joint learning policy for ob-
fuscation, recovery, and pose estimation modules, with
the ultimate aim of maintaining pose information and
HPE performance after obfuscation and recovery.
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Figure 2. The complete pipeline of our proposed system. It contains a privacy-enhancing module GX erasing private information, a
module GY recovering the removed private information, two discriminators DX , DY for distinguishing the generated portraits, and a pose

estimator P implementing pose estimation. denotes the trainable modules, and denotes the frozen modules.

• We experimentally show that our system achieves ro-
bust performance in privacy protection, recovery of orig-
inal images, and accurate human pose estimation. With
joint training, on privacy-enhanced images, our model
achieves around 10% higher average precision than the
one that only finetunes the HPE model, while also
equipped with strong obfuscation capability. On recov-
ered images, our model further enhances the quality by
around 3%, thanks to the accurate recovery and adaptive
injection of HPE-related information.

2. Method
In this section, we elaborate on each component of our

proposed system. As illustrated in Fig. 2, our system is
composed of three modules: (1). A privacy-enhancing
module (Sec. 2.1). We leverage an image-to-image style
translation model using conditional generative adversarial
networks (cGANs) [45] to generate privacy-enhanced por-
traits. The privacy-enhanced module is able to anonymize
SPI in the images while preserving the features for the
downstream tasks. The style translation is learned with
the guide of a pose estimator such that necessary features
are injected for downstream tasks. (2). A privacy recov-
ery module (Sec. 2.2). In order to facilitate the reversibil-
ity given authorization, we use another pair of cGANs and
jointly optimize them with the privacy-enhancing module to
recover the SPI. (3). A pose estimator for human detection
and pose estimation on both privacy-enhanced and recov-
ered images (Sec. 2.3). All modules are tuned end-to-end to
maintain pose estimation quality, where the pose estimator

provides feedback for the first two modules.

2.1. Privacy Enhancing Module
Consider a set of images in the original domain

{X0, X1, · · · , Xn} ∈ X . Each image Xn contains one
or multiple people of portraits {xn,0, xn,1, · · · , xn,i} ∈
X with articulated pose annotations {pxn,0, pxn,1, · · · , pxn,i},
where i denotes the portrait index in Xn. We lever-
age a pretrained lightweight object detector to detect all
people and crops the regions to construct a data pool of
{x0,0, x0,1, · · · , xn,i} ∈ X with poses {px0,0, px0,1, · · · pxn,i}.

The goal of the privacy-enhancing module can be de-
fined as follows: Given the pool of training articulated
portraits {x0,0, · · · , xn,i} with poses {px0,0, · · · pxn,i}, we
want to generate the paired privacy-enhanced portraits
{y′0,0, · · · , y′n,i} ∈ Y in the desensitized domain with poses

{py
′

0,0, · · · p
y′

n,i}. y′n,i should maintain a high pose feature

similarity with the paired portrait xn,i (i.e., pxn,i ≈ py
′

n,i)
while removing the SPI in it. To achieve this in a learn-
able manner, we introduce a generator GX and discrimina-
tor DY .

The generator GX generates the privacy-enhanced por-
trait y′n,i = GX (xn,i). To facilitate the generation, a
discriminator DY is adopted to learn to distinguish the
generated portraits y′n,i and the desensitization style guid-
ance portraits yn,i = A(xn,i), where yn,i is the privacy-
enhanced portrait generated from a conventional desensi-
tization method A. Mathematically, DY distinguishes the
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portrait pair (yn,i, y′n,i) via a discriminator loss:

LDY =− E(x,y)∼pdata(x,y)[logDY(y|x)]
− Ex∼pdata(x)[log(1−DY(GX (x)|x))] (1)

, where DY(a|b) is the discriminator’s output probability
that the a is real given the condition b.

On the other hand, GX tries to trick DY . Therefore, it is
optimized via the following loss:

LGX = −Ex∼pdata(x)[logDY(GX (x)|x)] (2)

. By constructing the adversarial relation, GX and DY are
trained jointly and boost the other’s performance gradually.

However, the desired style that GX should learn is not
specified in the aforementioned adversarial training, im-
pacts the training stability and potentially results in model
collapse. Therefore, we introduce an extra loss term L1 that
explicitly indicates the optimization direction:

L1 = E(x,y)∼pdata(x,y)[∥y −GX (x)∥1] (3)

. While L1 guides the learning of the style, on the other
hand, a too-low value hinders the injection of the neces-
sary information for HPE. Therefore, inspired by Huber
loss [28], we adopt a modified loss LXY to balance the style
guidance and information injection:

LXY =

{
L1 if L1 ≥ T,

0 otherwise
(4)

, where T is a predefined threshold. The total loss of the
privacy-enhancing module is

Lenhance = LDY + LGX + λ1LXY (5)

, where λ1 is a hyperparameter.
The remaining background denoted Xn,\ = Xn \

{xn,0, · · · , xn,i} is combined with the privacy-enhanced
portraits {y′n,0, · · · , y′n,i} to form the privacy-enhanced im-
age Y ′

n = Xn,\
⋃
{y′n,0, · · · , y′n,i}.

2.2. Privacy Recovery Module

The privacy recovery module aims to recover the SPI
hidden in the privacy-enhanced portraits y′ ∈ Y . The recov-
ery problem can be defined as follows: Given the privacy-
enhanced portraits {y′0,0, · · · , y′n,i} ∈ Y , the module re-
covers the SPI and generates the privacy-recovered portraits
{x′

0,0, · · · , x′
n,i} ∈ X as similar to the original portraits as

possible.
The recovery module adopts a similar architecture as the

privacy-enhancing module, consisting of a generator GY
and a discriminator DX . However, one difference between
the two modules is that the privacy recovery module takes
the learnable generations {y′n,i, · · · , y′n,i} as input, but not

the fixed inputs, such as xn,i, and yn,i. This is because the
goal of the recovery module is specific to recover the SPI
in the privacy-enhanced portraits, therefore, there is no use
in force it learns the mapping from the traditional desensi-
tized images yn,i to xn,i. The generator GY generates the
privacy-recovered portrait x′

n,i = GY(y
′
n,i), and the dis-

criminator DX distinguishes the portrait pair (xn,i, x
′
n,i).

The GY is optimized via the loss

LGY = −Ey′∼p(y′)[logDY(GY(y
′)|y′)] (6)

, and the DX facilitates its performance by the loss

LDX =− Ex∼pdata(x),y′∼p(y′)[logDX (x|y′)]
− Ey′∼p(y′)[log(1−DX (GY(y

′)|y′))] (7)

. A consistency loss Eq. (8) is introduced in the recovery
module to guide the whole privacy-enhancing and recovery
process explicitly. It forces the recovered portraits to have a
similar style to the original portraits.

Lconsistency = Ex∼pdata(x)[∥GX (GY(x))− x∥1]) (8)

. The total objective function of the privacy recovery mod-
ule is

Lrecovery = LGY + LDX + λ2Lconsistency (9)

, where λ2 is a hyperparameter that controls the style ex-
plicit guidance.

2.3. Pose Estimator

The pose estimator model P conducts pose estimation
on Y ′

n without seeing any SPI. Given a set of images
{Y ′

0 , · · · , Y ′
n}, the model is optimized via multiple loss

terms: a bounding box loss Lbbox that measures the overlap
between the predicted bounding box [y′n,i] and the ground
truth bounding box, a pose loss Lpose that measures the dif-
ference between the predicted keypoints and ground truth
articulation keypoints, an object loss Lobj that classifies
whether a keypoint is visible, and a classification loss Lcls

that classifies the detected objects into predefined category
(i.e., “human”). The loss function of a pose estimator is

LPEY = LbboxY + LposeY + LobjY + LclsY (10)

. Since the purpose of our system is to estimate human
pose in both the privacy-enhanced images and the privacy-
recovered images, P should be capable of implementing
pose estimation on the images from both domains (X and
Y). Therefore, the pose estimator is trained on the pairs
(y′, x′). The total loss for the pose estimator is denoted as:

LPE = LPEX + LPEY (11)

. LPEX is defined on recovered images and LPEY is for
privacy-enhanced images.
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Finally, we jointly optimize the privacy-enhancing,
privacy-recovery, and pose estimation modules end-to-end
with the following overall loss function:

L = Lenhance + Lrecovery + λ3LPE (12)

, where λ3 is a hyperparameter.

3. Experiments

3.1. Setup

Our system is developed using PyTorch [49] and is
trained on an NVIDIA RTX A6000 GPU. The architecture
employs a U-Net [52] model as the backbone for the gener-
ators and PatchGAN [32] for the discriminators. For pose
estimation, we integrate YOLOv8 [33], although the model
can be interchangeably replaced with alternative pose es-
timation algorithms to suit specific needs. Training of
these modules employs distinct optimization strategies: the
generators and discriminators utilize the Adam optimizer,
whereas YOLOv8 employs the AdamW optimizer to poten-
tially enhance training stability and performance. The ini-
tial learning rate is set at 0.000035, which undergoes expo-
nential decay to facilitate convergence. Data augmentation
techniques include random horizontal flipping and adjust-
ments to hue, saturation, and brightness of the input images.
We train our models with a batch size of 16.

The experiments are conducted on the widely used
datasets: MPII Human Pose (MPII) [4], and Microsoft
Common Objects in Context (COCO) [38]. The MPII
dataset comprises approximately 25,000 images featuring
over 40,000 individuals. Each pose within this dataset is
manually annotated with up to 16 body joints. The COCO
dataset encompasses over 200,000 labeled individuals, each
annotated with 17 body joints, primarily focusing on people
depicted at medium and large scales.

We assess our system utilizing established metrics for
image quality and pose estimation. For the evaluation of
privacy enhancement and recovery, we employ two com-
monly accepted metrics: the Peak Signal-to-Noise Ra-
tio (PSNR) and the Structural Similarity Index Measure
(SSIM) [66]. PSNR values range from 0 to ∞, with ∞
indicating perfect similarity, implying no discernible differ-
ence between the compared images. The SSIM varies from
0 to 1, where a value of 0 indicates no structural similarity
between the images. Typically, image pairs are deemed to
exhibit high similarity when the PSNR≥ 30 and the SSIM
≥ 0.9 [31, 66]. For pose estimation, we utilize the Object
Keypoint Similarity (OKS), analogous to the Intersection
over Union (IoU) used in object detection. OKS is calcu-
lated based on the scale of the subject and the Euclidean dis-
tances between predicted keypoints and their correspond-
ing ground truth points. To quantify the performance of

our pose estimation, we employ the mean Average Preci-
sion (mAP) and mean Average Recall (mAR) at an OKS
threshold of 0.5, denoted as mAP@0.5 and mAR@0.5.

The conventional desensitization methods used in our
system comprise Gaussian blurring, where the kernel radius
r is set to 8, and pixelation, with each pixel block having a
side length of r = 12.

3.2. Results of Privacy Enhancement

Figure 3 presents a qualitative comparison of our
privacy-enhancing module. In contrast to the original por-
traits, our privacy-enhanced portraits demonstrate superior
visual privacy protection. The contours of the body, as well
as the details of the face and clothing, are obscured, thereby
preventing SPI through visual inspection. Compared to con-
ventional desensitized portraits, our privacy-enhanced por-
traits achieve a competitive level of visual obfuscation while
employing a distinct learnable approach.

Table 1 illustrates the quantitative comparison between
privacy-enhanced portraits and raw images in terms of
PSNR and SSIM. We also show the zero-shot HPE perfor-
mance of a pretrained pose estimator pre-trained on both
types of privacy-enhanced images. Compared to conven-
tional desensitized portraits, our privacy-enhanced portraits
attain similar PSNR and SSIM values when compared to the
original portraits. This indicates that our method achieves
comparable levels of privacy protection to the baseline. Ef-
fective privacy enhancement necessitates that the pose es-
timator, pretrained on original images, should fail to make
accurate zero-shot inferences on the privacy-enhanced im-
ages. Our method significantly reduces the HPE perfor-
mance, indicating that the pretrained pose estimator strug-
gles to perform HPE accurately on the modified images.
This substantial degradation in performance demonstrates
the robust privacy enhancement capabilities of our ap-
proach. The privacy-enhancing module guided by pixe-
lation demonstrates a lower image similarity to the orig-
inal images and more significantly impacts the HPE per-
formance of the pretrained pose estimator, compared to the
module guided by blurring.

In addition to the visual obfuscation capability, we also
expect the system to restore high efficacy in HPE by fine-
tuning the pose estimator and adapting toward the privacy-
enhanced images. However, with the conventional method,
the carefully finetuned pose estimator model still observes
a significant drop in performance. As shown in Tab. 2, the
metric mAP@0.5{joint, p} was cut by around 15%, mainly
due to the irrecoverable loss of information with the obfus-
cation. In contrast, when enabling the joint optimization of
the three components within our system, there is a signifi-
cant improvement in HPE performance, as evidenced by the
data in the first two columns of Tab. 2. Both the mAP@0.5
and the mAR@0.5 of our method exceed those achieved
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Figure 3. Qualitative comparison on privacy-enhanced portraits. (a) original portraits; (b)/(d) conventional desensitized portraits via
blurring/pixelation; (c)/(e) privacy-enhanced portraits guided by blurring/pixelation. Enlarge for details.

Dataset MPII (mAP@0.5{pre, o} = 83.9, mAR@0.5{pre, o} = 89.4)a COCO (mAP@0.5{pre, o} = 86.2, mAR@0.5{pre, o} = 90.8)a

Metrics PSNR(o,p)↓b SSIM(o,p)↓b mAP@0.5{pre, p} ↓c mAR@0.5{pre, p} ↓c PSNR(o,p)↓b SSIM(o,p)↓b mAP@0.5{pre, p} ↓c mAR@0.5{pre, p} ↓c

(1). Blurring

Conventional 23.71 0.65 0.3 1.0 23.01 0.60 27.2 31.4
Ours 23.36 0.68 11.9 18.7 22.81 0.66 35.3 40.5

(2). Pixelation

Conventional 19.97 0.53 0.1 0.6 19.34 0.49 0.1 0.3
Ours 20.89 0.56 0.2 0.5 20.15 0.54 0.2 0.3

a The subscript {pre, o} indicates a pose estimator pretrained on original images (pre), and tested on original images (o).
b A lower value indicates a lower similarity between the original image (o) and the privacy-enhanced image (p), showing a better privacy enhancement.
c A lower value indicates a better privacy enhancement. The subscript {pre, p} represents a pose estimator pretrained on original images (pre), and tested on

privacy-enhanced images (p).

Table 1. Image Quality and Pose Estimation Performance of Privacy-enhanced Portraits.

with conventional desensitized portraits, with about 10%
improvement in mAP0.5. Although these values are still
marginally lower than those obtained by applying a pose
estimator trained on original images to original images,
this underscores that our system effectively incorporates
valuable information into the privacy-enhanced portraits,
thereby enhancing HPE performance.

3.3. Results of Privacy Recovery

A key strength of our system is that the anonymization
process is reversible and we learn a uniform pose estima-
tor for images before and after recovery. Figure 4 provides
a qualitative comparison between the original portraits and
the privacy-recovered portraits. The privacy-recovered por-
traits display visual quality that is on par with the origi-
nal portraits. Distinguishing between the original and the
privacy-recovered portraits through human visual inspec-
tion proves to be challenging, indicating effective restora-
tion of SPI in the privacy-recovered images.

Table 2 presents the image quality metrics for the recov-
ered images. The PSNR and SSIM values of the privacy-
recovered portraits relative to the original portraits (i.e.,
PSNR(o, r) and SSIM(o,r) in Tab. 2) exceed 30 and 0.9,
respectively, demonstrating that the privacy recovery mod-
ule effectively restores the SPI. Surprisingly, the pose es-
timator, optimized jointly with other system components,

outperforms a pose estimator trained solely on original im-
ages when applied to those images; it shows an average
3% improvement in mAP. This improvement is likely due
to the privacy recovery module’s dual function of not only
restoring SPI from the portraits but also enhancing the HPE-
related features during the recovery process, as guided by
LPEX . Consequently, the privacy-recovered portraits retain
the SPI while accentuating HPE-related features, thereby
facilitating more accurate pose estimation. Additionally, the
experimental results show that the system guided by blur-
ring outperforms the other one (i.e., guided by pixelation)
in terms of pose estimation on obfuscated and recovered
images. Conversely, the system guided by pixelation more
effectively restores the SPI from the privacy-enhanced im-
ages, achieving higher image quality (i.e., PSNR and SSIM
metrics).

4. Discussion

4.1. Impact of Desensitization Guidance

Conventional desensitization guidance dictates the level
of privacy enhancement in our module, influencing the style
of the generated privacy-enhanced portraits. Severe desen-
sitization, while increasing privacy, complicates the inte-
gration of HPE-related features, thereby hindering the joint
training of the pose estimator and adversely affecting HPE
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Figure 4. Qualitative results of the privacy-recovered portraits. (a) original portraits; (b)/(c) the portraits recovered from the privacy-
enhanced portraits guided by blurring/pixelation. Enlarge for details.

Dataset MPII (mAP@0.5{pre, o} = 83.9, mAR@0.5{pre, o} = 89.4)a

Metrics mAP@0.5{joint, p} ↑b mAR@0.5{joint, p} ↑b mAP@0.5{joint, r} ↑b mAR@0.5{joint, r} ↑b PSNR(o,r)↑c SSIM(o,r)↑c

(1). Blurring
Conventional 70.5 81.3 - - - -

Ours 81.5 88.8 87.4 92.4 32.58 0.94
(2). Pixelation
Conventional 65.2 77.9 - - - -

Ours 74.9 84.9 87.1 91.3 38.54 0.98

Dataset COCO (mAP@0.5{pre, o} = 86.2, mAR@0.5{pre, o} = 90.8)a

Metrics mAP@0.5{joint, p} ↑b mAR@0.5{joint, p} ↑b mAP@0.5{joint, r} ↑b mAR@0.5{joint, r} ↑b PSNR(o,r)↑c SSIM(o,r)↑c

(1). Blurring
Conventional 62.1 74.7 - - - -

Ours 75.3 84.9 89.0 92.5 34.92 0.95
(2). Pixelation
Conventional 59.4 65.6 - - - -

Ours 70.3 81.1 88.6 92.0 37.63 0.98

a The subscript {pre, o} indicates a pose estimator pretrained on original images (pre), and tested on original images (o).
b A higher value indicates a better performance. The subscript {joint, o}, {joint, p}, {joint, r} represents a pose estimator joint trained

with the privacy-enhancing and recovery modules, and tested on the original images (o), privacy-enhanced images (p), and privacy
recovery images (r), respectively.

c A higher value indicates a higher similarity between the original image (o) and the privacy-recovered image (r), showing a better
recovery.

Table 2. Image Quality and Pose Estimation Performance of Privacy-recovered Portraits.

Metrics PSNR(o, p) ↓ SSIM(o, p) ↓ mAP@0.5{joint, p} ↑ mAR@0.5{joint, p} ↑
(1). Blurringa

r = 2 29.22 0.84 82.5 89.3
r = 4 26.45 0.73 82.1 89.0
r = 8 23.36 0.68 81.5 88.8
r = 12 22.49 0.63 77.8 86.3

(2). Pixelationb

r = 4 24.40 0.68 80.8 88.2
r = 8 21.36 0.55 76.2 85.3
r = 12 20.89 0.56 74.9 84.9
r = 16 20.09 0.47 60.7 75.2

a In blurring, r represents the radius of the blur kernel.
b In pixelation, r denotes the side length of each pixel block.

Table 3. Impact of Conventional Desensitization Guidance.

performance. Conversely, mild desensitization facilitates
feature integration but may compromise privacy enhance-
ment. Thus, the strategic selection of desensitization lev-
els is crucial, as it significantly impacts overall system per-
formance. Table 3 presents the performance of various
conventional desensitization guidance methods, evaluating
both portrait quality and HPE accuracy. As r increases,
the capability for privacy enhancement improves, whereas
the HPE performance deteriorates. Specifically, when r in-
creases from 12 to 16 in pixelation, the similarity between
the privacy-enhanced portraits and the original portraits re-
mains relatively unchanged, yet there is a substantial de-
cline in HPE performance. A similar pattern is observed in
blurring when r changes from 8 to 12.
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Figure 5. Qualitative results of the privacy-enhanced portraits
guided by Gaussian noise. (a) conventional desensitized portraits;
(b) privacy-enhanced portraits guided by Gaussian noise addition.

4.2. Impact of Adopting Noise Addition as Privacy
Enhancement Guidance

Gaussian noise addition is another widely recognized
conventional desensitization method. We explore its im-
pact when utilized as guidance within our system. Fig-
ure 5 presents a qualitative comparison between con-
ventional desensitized portraits and their corresponding
privacy-enhanced counterparts. The privacy-enhanced por-
traits generated in the system exhibit numerous artifacts,
diverging from the guaidance and compromising privacy
preservation. We hypothesize that this deviation arises be-
cause Gaussian noise addition introduces a random pattern,
which is challenging to learn through Eq. (3).

4.3. Backbone & Model Lightweightness

To facilitate deployment in surveillance environ-
ments, our privacy-enhancing module must be sufficiently
lightweight to operate on edge devices without sacrificing
its privacy-enhancement capabilities. We evaluate the im-
pact of different backbones of the privacy-enhancing mod-
ule on overall performance. Table 4 displays the results
in terms of privacy-enhancement, HPE performance, and
inference speed. Although both U-Net and ResNet back-
bones effectively capture the patterns of conventional de-
sensitization, the privacy-enhanced portraits generated with
a ResNet backbone exhibit poorer HPE performance. This
suggests a failure in integrating HPE-related features effec-
tively, potentially due to the absence of skip connections
that are present in U-Net for transferring low-level infor-
mation across the network. Further evaluations conducted
on the NVIDIA Jetson AGX Orin [46] reveal that U-Net
configurations 7 and 8 achieve desirable inference speeds,
maintaining real-time processing capabilities (i.e., 30 FPS),
which surpass those of the ResNet backbones. Given these
findings, U-Net emerges as the more suitable backbone
for our privacy-enhancing module, considering both perfor-
mance metrics and latency requirements.

Metrics PSNR(o, p)↓ SSIM(o, p)↓ PSNR(o, r)↑ SSIM(o, r)↑ mAP@0.5{joint, p} ↑ mAR@0.5{joint, p} ↑ FPS↑a

(1). Blurring

U-Net 7 23.36 0.68 32.58 0.94 81.5 88.8 63.71
U-Net 8 23.34 0.68 32.55 0.94 81.4 88.8 59.84
ResNet 6 23.86 0.69 32.46 0.93 68.7 79.1 39.95
ResNet 9 23.91 0.69 32.41 0.93 67.5 78.8 34.82

(2). Pixelation

U-Net 7 20.89 0.56 38.54 0.98 74.9 84.9 61.22
U-Net 8 20.81 0.55 38.63 0.98 75.2 85.0 57.19
ResNet 6 21.15 0.57 38.51 0.98 60.5 73.9 37.46
ResNet 9 21.18 0.57 38.45 0.97 60.9 74.1 33.96

a Frame per second (FPS) is measured at inference speed on NVIDIA Jetson AGX Orin.

Table 4. Impact of Backbone Architecture and Inference Speed on
Edge Device.

5. Related Work

5.1. Pose Estimation

Multiple approaches exist for addressing HPE, with re-
cent advancements in deep learning demonstrating superior
performance compared to earlier methods [50, 61, 70, 71].
Notable recent deep-learning-based algorithms include [5,
22, 36, 37, 43]. These methods are typically discussed sep-
arately concerning single-person and multi-person scenar-
ios. In single-person pose estimation, the objective is to
localize joint positions in images containing only one per-
son [12, 43, 59, 60]. In contrast, multi-person pose estima-
tion methods can be categorized into top-down and bottom-
up approaches. Top-down methods [7,13,37,56,64,69] first
employ person detectors to identify individual persons in an
image, then apply single-person pose estimation to each de-
tected person. In contrast, bottom-up methods [42, 63, 65]
first detect all body keypoints in an image and subsequently
group them into distinct person instances.

5.2. Privacy Enhancing Methods

Naive image privacy-enhancing techniques such as
masking, blurring, or pixelation are commonly employed in
practice [1,10]. However, these methods tend to remove se-
mantic information and significantly degrade the quality of
privacy-enhanced images, rendering the data unusable for
many applications. Some efforts have explored addressing
the issue through additional modalities [2,48], but these ap-
proaches are often impractical and lack scalability. [14, 77]
involve encrypting feature vectors of visual data to ensure
privacy. However, encrypting large volumes of visual data
is complex and resource-intensive. Recent studies have
leveraged deep generative models to anonymize data while
preserving its utility for downstream applications. They ei-
ther inpaint missing regions [29, 44] or transform original
regions [20,41,51,67]. However, much of prior work has fo-
cused primarily on face anonymization, leaving other iden-
tifiers such as clothing and body type untouched, which can
compromise privacy. While some efforts have targeted full-
body anonymization [30, 44], these approaches often lack
recoverability, limiting their applicability.
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6. Conclusion
We propose a privacy-enhancing system for HPE that ad-

dresses the critical need for protecting SPI while maintain-
ing the performance of HPE tasks. The privacy-enhancing
module, privacy recovery module, and pose estimator work
in unison to anonymize SPI, allow for its recovery by au-
thorized personnel, and ensure the preservation of contex-
tual information essential for accurate behavior interpreta-
tion. Our experimental results demonstrate that the system
achieves robust performance in privacy protection, accurate
recovery of original images, and high-precision HPE.
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[47] José Ramón Padilla-López et al. Visual privacy protec-
tion methods: A survey. Expert Systems with Applications,
42(9):4177–4195, 2015. 2

[48] Marina Paolanti et al. Person re-identification with rgb-d
camera in top-view configuration through multiple nearest
neighbor classifiers and neighborhood component features
selection. Sensors, 18(10):3471, 2018. 8

[49] Adam Paszke et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019. 5

[50] Leonid Pishchulin et al. Poselet conditioned pictorial struc-
tures. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 588–595, 2013. 8

[51] Zhongzheng Ren et al. Learning to anonymize faces for pri-
vacy preserving action detection. In Proceedings of the eu-
ropean conference on computer vision (ECCV), pages 620–
636, 2018. 8

[52] Olaf Ronneberger et al. U-net: Convolutional networks for
biomedical image segmentation. In Medical image comput-
ing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer,
2015. 5

[53] Tao Ruan et al. Devil in the details: Towards accurate single
and multiple human parsing. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 4814–
4821, 2019. 1

[54] Michael Ryoo et al. Privacy-preserving human activity
recognition from extreme low resolution. In Proceedings of
the AAAI conference on artificial intelligence, volume 31,
2017. 2

[55] Nurul I Sarkar et al. A secure long-range transceiver for
monitoring and storing iot data in the cloud: design and per-
formance study. Sensors, 22(21):8380, 2022. 2

[56] Dahu Shi et al. End-to-end multi-person pose estimation
with transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11069–11078, 2022. 8

[57] Vinkle Srivastav et al. Human pose estimation on privacy-
preserving low-resolution depth images. In International
conference on medical image computing and computer-
assisted intervention, pages 583–591. Springer, 2019. 2

[58] Torben Teepe et al. Towards a deeper understanding
of skeleton-based gait recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1569–1577, 2022. 1

[59] Jonathan Tompson et al. Efficient object localization using
convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
648–656, 2015. 8

[60] Alexander Toshev et al. Deeppose: Human pose estimation
via deep neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1653–1660, 2014. 8

[61] Fang Wang et al. Beyond physical connections: Tree models
in human pose estimation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
596–603, 2013. 8

10



[62] Heng Wang et al. Action recognition with improved trajec-
tories. In Proceedings of the IEEE international conference
on computer vision, pages 3551–3558, 2013. 1

[63] Haixin Wang et al. Regularizing vector embedding in
bottom-up human pose estimation. In European Conference
on Computer Vision, pages 107–122. Springer, 2022. 8

[64] Jian Wang et al. Graph-pcnn: Two stage human pose estima-
tion with graph pose refinement. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part XI 16, pages 492–508. Springer,
2020. 8

[65] Yihan Wang et al. Lite pose: Efficient architecture design for
2d human pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13126–13136, 2022. 8

[66] Zhou Wang et al. Image quality assessment: from error vis-
ibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004. 5

[67] Taihong Xiao et al. Adversarial learning of privacy-
preserving and task-oriented representations. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
pages 12434–12441, 2020. 8

[68] Feiyi Xu et al. Action recognition framework in traffic scene
for autonomous driving system. IEEE Transactions on Intel-
ligent Transportation Systems, 23(11):22301–22311, 2021.
1

[69] Sen Yang et al. Transpose: Keypoint localization via trans-
former. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 11802–11812, 2021. 8

[70] Yi Yang et al. Articulated pose estimation with flexible
mixtures-of-parts. In CVPR 2011, pages 1385–1392. IEEE,
2011. 8

[71] Bangpeng Yao et al. Modeling mutual context of object and
human pose in human-object interaction activities. In 2010
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 17–24. IEEE, 2010. 8

[72] Balasubramanian Yogameena et al. Computer vision based
crowd disaster avoidance system: A survey. International
journal of disaster risk reduction, 22:95–129, 2017. 1

[73] Chang Yu et al. Advanced user credit risk prediction model
using lightgbm, xgboost and tabnet with smoteenn. arXiv
preprint arXiv:2408.03497, 2024. 1

[74] Chang Yu et al. Credit card fraud detection using advanced
transformer model. arXiv preprint arXiv:2406.03733, 2024.
1

[75] Sanggeon Yun et al. Hypersense: Hyperdimensional intelli-
gent sensing for energy-efficient sparse data processing. Ad-
vanced Intelligent Systems, page 2400228, 2024. 2

[76] Sanggeon Yun et al. Missiongnn: Hierarchical multimodal
gnn-based weakly supervised video anomaly recognition
with mission-specific knowledge graph generation. arXiv
preprint arXiv:2406.18815, 2024. 2

[77] Bowen Zhao et al. Freed: An efficient privacy-preserving
solution for person re-identification. In 2022 IEEE Confer-
ence on Dependable and Secure Computing (DSC), pages
1–8. IEEE, 2022. 8

[78] Qi Zheng et al. Advanced payment security sys-
tem:xgboost, lightgbm and smote integrated. arXiv preprint
arXiv:2406.04658, 2024. 1

11


	. Introduction
	. Method
	. Privacy Enhancing Module
	. Privacy Recovery Module
	. Pose Estimator

	. Experiments
	. Setup
	. Results of Privacy Enhancement
	. Results of Privacy Recovery

	. Discussion
	. Impact of Desensitization Guidance
	. Impact of Adopting Noise Addition as Privacy Enhancement Guidance
	. Backbone & Model Lightweightness

	. Related Work
	. Pose Estimation
	. Privacy Enhancing Methods

	. Conclusion

