Brain-Inspired Hyperdimensional Computing in the Wild: Lightweight Symbolic Learning for Sensorimotor Controls of Wheeled Robots

Published in 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024

Efficiency and performance are significant challenges in applying Machine Learning (ML) to robotics, especially in energy-constrained real-world scenarios. In this context, Hyperdimensional Computing offers an energy-efficient alternative but has been underexplored in robotics. We introduce ReactHD, an HDC-based framework tailored for perception-action-based learning for sensorimotor controls of robot tasks. ReactHD employs hypervectors to encode sensory inputs and learn the suitable high-dimensional pattern for robot actions. It also integrates two HD-based lightweight symbolic learning techniques: HDC-based supervised learning by demonstration (HDC-IL) and HD-Reinforcement Learning (HDC-RL) to enable precise, reactive robot behaviors in complex environments. Our empirical evaluations show that ReactHD achieves robust and accurate learning outcomes comparable to state-of-the-art deep learning while substantially improving the performance and energy consumption efficiency by 14.2× and 15.3×. To the best of our knowledge, ReactHD is the first HDC-based framework deployed in real-world settings.

Download Paper